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Abstract

Objective　 Pneumoconiosis,  a  lung  disease  caused  by  irreversible  fibrosis,  represents  a  significant
public  health  burden.  This  study  investigates  the  causal  relationships  between  gut  microbiota,  gene
methylation,  gene  expression,  protein  levels,  and  pneumoconiosis  using  a  multi-omics  approach  and
Mendelian randomization (MR).

Methods　We analyzed gut microbiota data from MiBioGen and Esteban et al. to assess their potential
causal  effects  on  pneumoconiosis  subtypes  (asbestosis,  silicosis,  and  inorganic  pneumoconiosis)  using
conventional  and  summary-data-based  MR  (SMR).  Gene  methylation  and  expression  data  from
Genotype-Tissue Expression and eQTLGen, along with protein level data from deCODE and UK Biobank
Pharma  Proteomics  Project,  were  examined  in  relation  to  pneumoconiosis  data  from  FinnGen.  To
validate our findings, we assessed self-measured gut flora from a pneumoconiosis cohort and performed
fine  mapping,  drug  prediction,  molecular  docking,  and  Phenome-Wide  Association  Studies  to  explore
relevant phenotypes of key genes.

Results　Three core gut microorganisms were identified: Romboutsia (OR = 0.249) as a protective factor
against  silicosis, Pasteurellaceae (OR =  3.207)  and Haemophilus  parainfluenzae (OR =  2.343)  as  risk
factors for inorganic pneumoconiosis. Additionally, mapping and quantitative trait loci analyses revealed
that the genes VIM, STX8, and MIF were significantly associated with pneumoconiosis risk.

Conclusions　This multi-omics study highlights the associations between gut microbiota and key genes
(VIM,  STX8,  MIF)  with  pneumoconiosis,  offering  insights  into  potential  therapeutic  targets  and
personalized treatment strategies.
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 INTRODUCTION

P neumoconiosis  refers  to  a  group  of
occupational  lung  diseases  caused  by
prolonged  inhalation  and  retention  of

harmful  dust,  primarily  characterized  by  extensive
lung  fibrosis[1].  The  classification  of  pneumoconiosis
is  based  on  the  type  of  dust  exposure  and
pathological characteristics, with the major subtypes
including  silicosis,  asbestosis,  coal  workers’
pneumoconiosis (CWP), and other form[2]. The Global
Burden  of  Disease  study  analyzed  the  incidence
trends  of  various  pneumoconioses  across  195
countries  and  territories  from  1990  to  2017,
reporting  a  66.0% increase  in  cases  from  36,186  to
60,055,  with  notable  regional  variations[3].  The
development  of  therapeutic  drugs  for
pneumoconiosis  remains  challenging  due  to  the
inability  to  completely  eliminate  exposure  sources,
the irreversible nature of pulmonary fibrosis, and the
unclear  pathogenesis  of  the  disease[4].  Therefore,  a
comprehensive  investigation  of  pneumoconiosis
pathogenesis  and  the  development  of  innovative
preventive and therapeutic strategies are essential.

The  advancement  of  high-throughput
sequencing,  mass  spectrometry  analysis,  and  other
technologies has facilitated the application of multi-
omics  approaches  to  obtain  comprehensive  disease
insights.  These  approaches  are  instrumental  in
elucidating  disease  mechanisms,  enabling  drug
repurposing,  and  advancing  personalized  medicine.
With the emergence of the lung-gut axis concept, an
increasing  number  of  studies  have  focused  on
exploring  the  intricate  interactions  between  gut
microbiota,  its  metabolites,  and  pulmonary
fibrosis[5,6].  At  the  transcriptomic  and  metabolomic
levels,  the  reprogramming  of  the  arachidonic  acid
metabolic  pathway  and  its  key  metabolites,
prostaglandin  D₂  and  thromboxane  A₂,  has  been
shown  to  significantly  contribute  to  silicosis
development, with rimatroban effectively mitigating
the  associated  lung  inflammation  and  fibrosis[7].
Furthermore,  at  the  proteomic  level,  the
phosphorylation of epidermal growth factor receptor
and  spleen  tyrosine  kinase  has  been  identified  as  a
potential  therapeutic  target  in  silicosis,  with  the
targeted  agents  fostamatinib  and  gefitinib
demonstrating efficacy in reducing inflammation and

fibrosis,  thereby  improving  lung  function[8].
Additionally,  studies  suggest  that  DNA  methylation
plays  a  role  in  dust-induced  pulmonary  fibrosis,
providing  a  theoretical  basis  for  the  potential
application  of  DNA  methyltransferase  inhibitors  in
the  treatment  of  CWP[9].  Therefore,  this  study
investigates  the  associations  between  intestinal
flora,  proteome,  genome,  and  gene  methylation
with  pneumoconiosis  risk,  integrating  multi-omics
approaches  to  explore  targeted  diagnostic  and
therapeutic strategies for the disease.

Employing  a  Mendelian  randomization
approach  and  using  genetic  variation  as  an
instrumental variable, this study aims to establish a
causal  link  between  multi-omics  factors  and
pneumoconiosis  risk[10].  Unlike  traditional
randomized  controlled  trials,  Mendelian
randomization  (MR)  analyses  effectively  minimize
the  impact  of  confounding  factors  and  reverse
causation,  as  genetic  variants  are  randomly
allocated  at  conception  and  remain  unaffected  by
environmental  influences  or  disease  onset[11].  In
this  research,  we  integrated  extensive  genome-
wide association study (GWAS) data with molecular
quantitative  trait  loci  (QTL)  datasets  using
summary-data-based  MR  (SMR)  to  explore  the
causal  connections  between  gut  microbiota,
proteins,  gene  expression,  methylation  levels,  and
the three subtypes of pneumoconiosis. To validate
and  complement  the  findings  from  the  MR
analysis,  we  analyzed  the  abundance  and
metabolic  pathways  of  intestinal  flora  in  patients
with  pneumoconiosis  using  16S  rRNA  gene
sequencing.  Ultimately,  by  integrating  multi-omics
evidence  of  pneumoconiosis  with  existing  drug
molecule  libraries,  we  provide  new  insights  into
identifying  potential  therapeutic  agents  for
targeted treatments of the disease.

 METHODS

 Study Design

This  study  employs  MR  to  synthesize  evidence
from gut microbiota and multi-omics data, aiming to
expand  personalized  management  options  for
pneumoconiosis  patients. Figure  1 provides  an
overview  of  the  study  design.  Our  MR  analysis
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primarily utilized publicly available datasets from the
MiBioGen consortium, deCODE, UK Biobank Pharma
Proteomics  Project  (UKB-PPP),  the  eQTLGen
consortium,  the  Genotype-Tissue  Expression  (GTEx)
portal,  the  FinnGen  study,  and  research  conducted
by  Esteban  et  al.  and  McRae  et  al.  This  MR  study
adheres  to  three  fundamental  assumptions:  the
relevance  assumption,  which  requires  that
instrumental  variables  (IVs)  be  strongly  associated
with  exposure  factors;  the  independence
assumption,  which  ensures  that  IVs  are  not
influenced by known confounders; and the exclusion
restriction assumption,  which asserts  that  IVs  affect
the outcome solely through the exposure factor and
not via alternative pathways[12].

 Exposure Data Sources

 Gut Microbiota Data　 In this study, we used GWAS
data for two gut microbiota datasets, obtained from
the MiBioGen Consortium and the study by Esteban
et  al.  The  MiBioGen  study  (https://mibiogen.
gcc.rug.nl/)  included  24  cohorts  comprising  18,340
participants,  85% of  whom  were  of  European
ancestry  Supplementary  Table  S1.  This  GWAS
dataset explored 211 taxonomic levels, including 131
genera,  35  families,  20  orders,  16  classes,  and  9
phyla.  Additional  data  were  obtained  from  a  large-
scale  GWAS  of  7,738  Dutch  participants,  which
examined  207  microbial  taxa  and  205  metabolic
pathways, providing insights into both the taxonomic
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Figure 1. Study  design  for  MR-based  analysis  of  multi-omics  and  pneumoconiosis  risk. SMR,  summary-
data-based Mendelian randomization; QTL, quantitative trait loci; VTE, Venous Thromboembolism; SNP,
single nucleotide polymorphisms; PPH4, posterior probability of H4; PheWAS, phenome-wide association
study.
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composition  and  functional  aspects  of  microbial
communities[13].

 Quantitative Trait Loci Data

 Protein  Data　 The  protein  quantitative  trait  loci
(pQTL) data utilized in this study were obtained from
the  deCODE  Genetics  and  UKB-PPP  datasets
(https://registry.opendata.aws/ukbppp/).  The  team
at  deCODE  Genetics  conducted  GWAS  to  assess
plasma  protein  levels,  analyzing  data  from  35,559
Icelandic  participants  and  measuring  4,907
proteins[14].  UKB-PPP  employed  the  Olink  Explore™
platform  and  the  Illumina  NovaSeq™  6000
sequencing  platform  to  perform  pQTL  mapping,
integrating proteomics and genomic sequencing data
from 54,219 participants[15].  This  large-scale analysis
identified  14,287  significant  genetic  associations
across 2,923 protein markers.

 Expression and Methylation Data

The  eQTLGen  Consortium  and  the  GTEx  project
provided  expression  quantitative  trait  loci  (eQTL)  data
to  investigate  how  genetic  variants  influence  gene
expression and contribute to disease susceptibility. The
GTEx  project,  which  studies  tissue-specific  gene
expression  and  regulatory  mechanisms,  has  analyzed
samples  from  54  non-diseased  tissue  sites  across
nearly 1,000 individuals (https://www.�gtexportal.org/).
In  this  study,  we  specifically  used  eQTL  data  from
peripheral  blood  and  lung  tissue  to  explore  gene
regulation  in  pneumoconiosis.  Additionally,  as  a
supplementary  dataset,  the  eQTLGen  consortium
contributed  cis-derived  eQTL  data  from  31,684
individuals[16].  Given  the  critical  role  of  gene
methylation  in  transcriptional  regulation,  we
incorporated  data  from  methylation  quantitative  trait
loci  (mQTL)  studies.  We  used  52,916  cis-mQTLs
validated  in  the  Brisbane  Systems  Genetics  Study,
which included 614 individuals from 177 families, along
with  the  combined  Lothian  birth  cohorts  of  1921  and
1936,  comprising  1,366  individuals[17].  These  datasets
provided  essential  insights  into  epigenetic
modifications that may influence pneumoconiosis risk.

 Pneumoconiosis Outcomes Data

This  study  examined  three  types  of
pneumoconiosis—asbestosis,  silicosis,  and  inorganic
pneumoconiosis—using  GWAS  data  from  the
FinnGen  Biobank,  which  compiles  and  evaluates
genomic  and  health  data  from  hundreds  of
thousands  of  Finnish  participants[18].  We  used  the
R10 dataset, released on December 18, 2023, which
includes  data  on  silicosis  (98  cases  and  407,468

controls),  asbestos-related  pneumoconiosis  (675
cases  and  407,468  controls),  and  inorganic  dust
pneumoconiosis  (119  cases  and  407,468  controls).
Diagnoses  were  based  on  the  International
Classification  of  Diseases  9  and  10  criteria.  The
cohort  includes  detailed  classifications  as  follows:
J61  and  501  correspond  to  pneumoconiosis  caused
by  asbestos  and  other  mineral  fibers;  J62  and  502
refer  to  silicosis,  which  results  from  inhalation  of
silica-containing  dust;  and  J63  and  503  indicate
pneumoconiosis  caused  by  exposure  to  other
inorganic dusts (inorganic pneumoconiosis).

 Mendelian Randomization

To  assess  the  causal  relationship  between
variations in intestinal microbiota and QTL exposure,
we employed basic MR and SMR methods.

 Conventional Mendelian Randomization

The  causal  link  between  intestinal  microbiota
and  pneumoconiosis  was  primarily  investigated
using  the “TwoSampleMR” package.  To  select
instrumental  variables,  we  applied  a P-value
threshold of < 1 × 10−5 to ensure a strong association
between  single  nucleotide  polymorphisms  (SNPs)
and  intestinal  microbiota  exposure.  The  1000
Genomes  European  reference  panel  was  used  to
calculate  linkage  disequilibrium  (LD)  between  SNPs,
maintaining  an  LD  threshold  of r²  <  0.01.
Additionally,  we excluded SNPs with  an allele  effect
frequency  below  0.01  or  those  with  a  palindromic
structure  to  preserve  the  integrity  of  instrumental
variables.  To  mitigate  the  influence  of  weak
instrumental variables, we required the F-statistic to
exceed  10.  The  inverse  variance  weighting  (IVW)
method  served  as  the  primary  approach  for  MR
analysis,  while  the  Wald  ratio  method was  used  for
estimating  individual  SNP  effects.  MR-Egger  and
weighted  median  methods  were  employed  as
complementary  approaches.  To  assess  the
robustness of the findings, Cochrane’s Q statistic was
used  to  evaluate  heterogeneity  among  SNPs,  while
pleiotropy  was  assessed  using  a  combination  of  the
MR-Egger intercept test, the global outlier test (MR-
PRESSO),  and  leave-one-out  analysis.  The  Steiger
filter  method  was  ultimately  applied  to  confirm  the
directionality  of  the  association  between  intestinal
microbiota  and  pneumoconiosis,  eliminating  the
impact of reverse causation on the outcomes.

 Summary-data-based  MR  Analysis  and
Colocalization Analysis

To  investigate  the  association  between  gene
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methylation,  gene  expression,  protein  abundance,
and the risk of pneumoconiosis and its subtypes, we
employed  SMR,  which  provides  enhanced  statistical
power.  We  adhered  to  stringent  criteria  when
selecting  instrumental  variables  and  prioritized  cis-
QTLs  due  to  their  strong  association  with  gene
regulation  and  direct  impact  on  gene  expression.
This  biological  directness  minimizes  confounding
factors,  thereby  improving  the  precision  and
reliability  of  Mendelian  randomization  analysis.  Cis-
QTLs were identified by defining a window of ± 1,000
kb  centered  on  the  target  gene  and  applying  a
P-value  threshold  of  1  ×  10−5 for  selection.  To
prevent  sample  mismatches  and  preserve  the
integrity  of  instrumental  variables,  we  excluded
variants  where  the  allele  frequency  difference
exceeded  0.2,  thereby  reducing  potential
confounding and bias. Pleiotropy was assessed using
the heterogeneity in dependent instruments (HEIDI)
test  with  a  threshold  of P <  0.01,  and  the  results
were  integrated  with  SMR  findings  to  improve  the
accuracy of gene expression-phenotype associations.
We  conducted  colocalization  analysis  using  the  R
package  to  identify  causal  variants  shared  by
pneumoconiosis  across  mQTL,  eQTL,  and  pQTL
levels.  Colocalization  settings  employed  window
thresholds  of  ±  1,000  kb  for  pQTL-GWAS and eQTL-
GWAS,  and  ±  500  kb  for  mQTL-GWAS[19].  Evidence
supporting  colocalization  was  determined  based  on
posterior probabilities of H4 (PPH4) exceeding 0.70.

 Intestinal  Microbiota  Profiles  in  Pneumoconiosis
Patients

To  further  investigate  the  relationship  between
gut microbiota and pneumoconiosis, we recruited 43
male stage I CWP patients (CWP group) and 48 male
dust-exposed  workers  (DEW  group)  for  a  study
conducted  by  the  NHC  Key  Laboratory  of
Pneumoconiosis  at  the  First  Hospital  of  Shanxi
Medical  University  between  October  2021  and
August  2022.  Inclusion  criteria  were  as  follows:  (1)
adult  male  participants,  (2)  a  diagnosis  of  coal
workers’ pneumoconiosis  according  to  the  GBZ70-
2015 Diagnostic Criteria and the International Labour
Organization  Guidelines,  and  (3)  for  dust-exposed
workers,  a  history  of  at  least  five  years  of  coal  dust
exposure, absence of CWP symptoms, a normal lung
condition  confirmed via chest  X-ray,  and  no
indication  of  CWP  based  on  diagnostic  criteria.
Exclusion  criteria  included  (1)  individuals  with
incomplete  occupational  history,  (2)  those  with
other  respiratory  diseases,  and  (3)  individuals  who
had  taken  antibiotics  within  the  past  three  months.

Paired  fecal  samples  were  collected  from
participants  for  16S  rRNA  gene  sequencing  to
analyze and characterize gut microbial communities.
Fresh  fecal  samples  were  obtained  using  sealed
containers designed for fecal collection, with aseptic
principles strictly followed throughout the collection
process.  Microbial  species  showing  differential
abundance  between  groups  were  analyzed  using
linear  discriminant  analysis  effect  size  (LEfSe),
focusing  on  operational  taxonomic  unit  (OTU)
clustering and species annotation to identify the top
10  taxa  by  relative  abundance  at  each  taxonomic
level.  Additionally,  16S  rRNA  sequencing  data  were
processed  using  Phylogenetic  Investigation  of
Communities  by  Reconstruction  of  Unobserved
States  (PICRUSt)  to  infer  functional  compositional
profiles,  illustrating  functional  shifts  in  the  gut
microbiota  of  CWP  patients  (LDA  >  3.5, P <  0.05).
Details  regarding  ethical  approval  and  clinical  trial
registration  are  provided  in  the  supplementary
online material.

 Fine  Mapping  of  Key  SNPs  in  Gut  Microbiota  and
Genes

We selected core SNPs associated with intestinal
microbiota  that  corresponded  to  overlapping
microbial  taxa and functional  pathways identified in
both  the  MR  analysis  and  our  independent
evaluation  of  gut  microbiota  in  CWP  patients.
Functional  Mapping  and  Annotation  of  Genome-
Wide  Association  Studies  (FUMA)  was  employed,
primarily  using its  SNP2GENE module (https://fuma.
ctglab.nl/).  This  module  refines  potential  candidate
gene  regions  by  identifying  SNPs  closely  linked  to
core  gut  microbiota,  facilitating  fine  mapping  to
pinpoint  specific  genes  or  gene  variants  that  may
influence the phenotype[20].  This approach enhances
our  understanding  of  how  genetic  variations  affect
biological  traits  and  may  reveal  novel  biological
mechanisms  or  therapeutic  targets  for
pneumoconiosis.

 Multi-omics  and  Externally  Validated  Concordance
Analyses

To  elucidate  the  relationship  between  gut
microbiota  and  QTL  in  pneumoconiosis  risk,  we
integrated  multi-omics  data.  At  the  gut  microbiota
level,  taxa  that  remained  significant  after  MR
analysis  and  also  demonstrated  statistical
significance  in  our  independent  assessment  were
classified as significantly associated microorganisms,
while others were considered potentially associated.
At  the  QTL  level,  genes  that  overlapped  in  at  least
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two  pQTLs  and  three  eQTLs  were  categorized  as
significantly causally associated, whereas those with
overlap  in  one  pQTL  and  three  eQTLs  were
designated  as  potentially  causally  associated.
Additionally, genes and cis-eQTLs identified in FUMA
using SNPs closely linked to core gut microbiota that
also  exhibited  overlap  with  significant  pQTLs  were
classified  as  additional  genes  with  strong  causal
associations.  A P-value  <  0.05  was  considered
indicative of statistical significance.

 Phenotype-wide  Association  Analyses  Identified
Phenotypic Associations of Key Genes

Phenome-wide  association  studies  (PheWAS)
were  employed  to  investigate  the  relationships
between specific genetic variants and a broad range
of  phenotypes,  providing  insights  into  complex
genetic and phenotypic interconnections.  This study
utilized the gene-based association scanning feature
of  ExPheWas  (https://exphewas.statgen.org/)  to
analyze  key  genes.  The  analysis  aimed  to  identify
causal  links  between  these  genes  and  26,616
phenotypes within the UK Biobank dataset, including
362  self-reported  diseases,  21  manually  defined
cardiovascular  endpoints,  1,280 phase sections,  and
83  continuous  variables[21].  All  tests  were  adjusted
for  age,  sex,  and  the  first  ten  ancestry  principal
components, with association tests further stratified
by sex.

 Predicting Potential Drugs and Molecular Docking

To  explore  the  potential  of  targeting  key  genes
for  pharmacological  intervention,  we  used  web-
based pharmacological tools to assess the efficacy of
known  drugs  and  small-molecule  compounds  in
treating  pneumoconiosis.  DrugBank  (https://
www.�drugbank.com/)  was  employed  to  identify
potential drug candidates that intersect with protein
and gene expression data,  selecting approved drugs
for  subsequent  molecular  docking  analysis.
Molecular  docking,  a  critical  computational
technique  in  drug  discovery  and  optimization,
facilitates  early-stage  predictions  of  drug-like
properties  and  informs  further  drug  design  and
development.  Protein  structure  data  for  drug
candidates  were  obtained  from  the  PubChem
Compound  Database  (https://pubchem.ncbi.
nlm.nih.gov/)  and  the  Protein  Data  Bank
(http://www.rcsb.org/).  The  binding  affinities  and
interaction  patterns  between  drug  and  small-
molecule  candidates  and  their  respective  targets
were  evaluated  using  AutoDock  Vina  1.2.2,  a
computational protein-ligand docking software[22].

 RESULTS

 Causal  Relationship  between  Intestinal  Microbiota
and Pneumoconiosis

In  the  MiBioGen  study,  the  number  of  SNPs
used as IVs for each microbial taxon ranged from 3
to  21,  totaling  2,353  SNPs  included  in  the  follow-
up study. We identified 2,  9,  and 10 gut microbial
taxa  associated  with  the  risk  of  asbestosis,
inorganic  pneumoconiosis,  and  silicosis,
respectively. Among the protective factors against
asbestosis,  we  identified Dorea, Eubacterium
rectale group, Clostridia class, Butyricicoccus
genus,  and Marvinbryantia genus.  Conversely,
Eubacterium  ruminantium group, Lachnospira
genus, Butyrivibrio genus,  and Alistipes genus
were  associated  with  an  increased  risk  of
asbestosis.  Regarding  inorganic  pneumoconiosis,
elevated  levels  of Marvinbryantia and Olsenella
genera  were  linked  to  a  decreased  disease  risk,
while Catenibacterium, Holdemania,  and Dialister
genera  were  associated  with  an  increased  risk.
Similarly,  increased  levels  of Methanobrevibacter
genus, Methanobacteria class,
Methanobacteriales order,  and
Methanobacteriaceae family,  alongside
Marvinbryantia genus,  were  found  to  reduce  the
risk  of  inorganic  pneumoconiosis.  Conversely,
increased  levels  of Catenibacterium, Holdemania,
and Dialister were correlated with a higher disease
risk.  In  the  context  of  silicosis,
genus.unknowngenus.id.1868, Dialister genus, and
Romboutsia genus,  all  classified  under
Erysipelotrichales order, Erysipelotrichaceae
family,  and Erysipelotrichia class,  exhibited  a
positive  correlation  with  disease  risk.  In  contrast,
Adlercreutzia genus, Ruminococcaceae  UCG002
genus, Mollicutes class,  and Tenericutes phylum
demonstrated a  negative  correlation  with  silicosis
risk  (Figure  2 and  Supplementary  Tables  S2–S4).
Similarly, in an independent analysis, we employed
a  total  of  3,974  SNPs  as  instrumental  variables,
with  the  number  of  strongly  associated  SNPs  per
microbial  colony  ranging  from  3  to  19.  After
excluding  weak  instrumental  variables,  the  mean
F-statistic  value  was  21.56.  We  identified  10
functional  pathways  and  10  gut  microbial
abundances  causally  linked  to  asbestosis,  10
pathways  and  12  gut  microbial  abundances
associated  with  inorganic  pneumoconiosis,  and  8
pathways and 4 gut microbial abundances causally
linked to silicosis (Supplementary Tables S5–S7).
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 Gene  Methylation,  Expression,  and  Protein  QTL:
Causal Relationships with Pneumoconiosis

Following  the  application  of  rigorous  screening
criteria,  we  identified  94,338  CpG-SNP  pairs  from
McRae  et  al.,  19,250/6,995  eGene-SNP  pairs  from
the eQTLGen Consortium and GTEx V8 (Blood/Lung),
and 4,719/2,923 protein-SNP pairs from Ferkingstad
et al. (UKB-PPP to serve as instrumental variables for
SMR  analysis.  We  considered  a  result  statistically
significant  if  it  met  the  thresholds  of P <  0.05  and
P-HEIDI < 0.01.

 Asbestosis

In  our  investigation  of  asbestosis,  we  identified
causal  associations with 750 genes in eQTLGen, 313
genes  in  lung  tissue,  and  269  eQTLs  in  peripheral
blood,  with  70  eQTLs  overlapping  across  all  three
datasets  (Supplementary  Tables  S8–S10).
Subsequently,  we  identified  81  pQTLs  from  the
deCODE dataset and 102 pQTLs from UKB-PPP, both
associated  with  the  risk  of  asbestosis
(Supplementary  Tables  S11–S12).  Ultimately,  five
overlapping  genes—GGPS1,  STX8,  NT5C3B,  ACADM,
and  GSTM4—were  identified.  Among  these,  STX8
was  found  to  overlap  in  two  protein  datasets,
GSTM4  was  observed  at  methylation  site
cg05793930,  ACADM  at  cg05467918,  and  NT5C3B
exhibited  methylation  at  cg13092355  and
cg26502583 (Supplementary Table S13).

 Inorganic Pneumoconiosis

Similarly,  we identified 618,  242,  and 249 eQTLs
across  the  three  eQTL  datasets  that  were
significantly  associated  with  inorganic
pneumoconiosis.  An  intersection  analysis  of  these
datasets  revealed  70  key  eQTLs  (Supplementary
Tables  S14–S16).  From  the  two  pQTL  data  sources,
we  identified  62  and  90  pQTLs  that  were  causally
associated with the risk of inorganic pneumoconiosis
(Supplementary  Tables  S17–S18).  Ultimately,  PPT1
and  FBN2  were  found  to  influence  inorganic
pneumoconiosis  across  eQTL,  pQTL,  and  mQTL
levels,  specifically  at  methylation  sites  cg04560534,
cg22716190,  cg02271895,  and  cg17564775.
Additionally,  MIF  was  consistently  confirmed in  two
pQTL and three eQTL datasets, with methylation site
cg10819733  being  particularly  significant
(Supplementary Table S19).

 Silicosis

Applying the same methodology to establish the
causal  relationship  between  QTL  and  silicosis,  we

identified a total of 74 eQTLs from three intersecting
databases,  along  with  74  pQTLs  from  the  deCODE
repository  and  72  pQTLs  from  UKB-PPP,  all  strongly
associated  with  the  risk  of  developing  silicosis
(Supplementary  Tables  S20–S24).  In  our  final
analysis,  we  discovered  that  GM2A  and  TPK1
functioned  as  protective  factors  against  silicosis,
exerting  beneficial  effects  at  both  the  genetic  and
protein  levels.  Additionally,  methylation  at
cg21370481 and cg23307858 further enhanced TPK1
expression, contributing to a reduced risk of disease
(Supplementary  Table  S25).  Despite  incorporating
multiple  sources  of  eQTL  and  pQTL  overlaps  to
improve  the  likelihood  of  colocalization,  we
observed  that  UBP8  exhibited  the  highest  PPH4
value,  which  was  only  0.46  (Supplementary  Table
S26–S27).

 Intestinal  Microbiota  Profiles  in  Pneumoconiosis
Patients

Using an OTU clustering approach,  we identified
the 10 most abundant fecal  bacterial  species,  which
clustered  into  two  primary  groups.  These  species
included Klebsiella  pneumoniae, Romboutsia  ilealis,
Haemophilus  parainfluenzae, Faecalibacterium
prausnitzii, Escherichia  coli, Bacteroides  vulgatus,
Bacteroides  caccae, Bifidobacterium  adolescentis,
Prevotella  stercorea,  and Lactobacillus  mucosae
(Supplementary  Table  S28).  Furthermore,  we
conducted LEfSe analysis  to examine gut microbiota
differences between dust-exposed workers and CWP
patients,  identifying  31  distinct  microbial
differentiation  levels  (Figure  3).  The  detailed  results
are  presented  in  Supplementary  Table  S29.  To
characterize  functional  alterations  in  the  gut
microbiota  of  CWP  patients,  we  analyzed  16S  rRNA
sequencing data using PICRUSt, predicting the top 10
functional  categories  within  the  compositional
profile.  These  categories  included  transporters,
general  function  prediction  only,  ABC  transporters,
DNA  repair  and  recombination  proteins,  ribosome,
purine  metabolism,  peptidases,  pyrimidine
metabolism,  transcription  factors,  and  two-
component  systems  (Supplementary  Tables
S29–S30).  The  Supplementary  Tables  S28–S31
provide  comprehensive  data  on  functional
differences in microbiota composition.

 Key Genes Identified by Core Gut Microbial SNPs

By  integrating  the  significant  findings  from  the
MR  analyses  of  two  gut  microbial  taxa  and  three
types  of  pneumoconiosis  with  the  statistically
significant  microbial  species  identified  in  our
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independent  assessment,  we  successfully  identified
four  common  microbial  taxa.  These  included
Haemophilus  parainfluenzae,  which  ranked  among
the top 10 in relative abundance at the species level,
along  with Romboutsia genus  (g_Romboutsia),
Acidaminococcaceae family (f_Acidaminococcaceae),
and Pasteurellaceae family (f_Pasteurellaceae), all of
which were found within the differentially abundant
microbiota (Figure 4 and Supplementary Table S32).
Among these taxa, we ultimately selected only three
core groups, as the results for f_Acidaminococcaceae
showed  inconsistent  directionality  when  analyzed
using  both  IVW  and  MR-Egger  methods  (Figure  5).
The  23  SNPs  associated  with  these  four  microbiota

were  linked  to  50  essential  genes  and  27  cis-eQTLs
(Supplementary Tables S33–S34). Notably, we found
that  the  Vimentin  (VIM)  gene,  identified  from  the
deCODE  dataset,  was  causally  linked  to  asbestosis
and  simultaneously  intersected  with  mapped  genes
and cis-eQTLs. Consequently, we identified VIM as a
pivotal gene for asbestosis.

 Identification of Core Genes

Upon integrating multi-omics data, we identified
strong  causal  associations  by  aligning  the  positively
correlated  taxa  from  MR  analyses  with  statistically
significant  microbial  taxa  from  our  independent
assessment,  which  included s_Haemophilus
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abundant gut microbial species; (B) Relative abundance differences in microbial species between groups;
(C) Top 10 functional classes of gut microbiota; (D) Differences in gut microbial functional pathways.
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parainfluenzae, g_Romboutsia,
f_Acidaminococcaceae,  and f_Pasteurellaceae.  At
the QTL level, we pinpointed genes causally linked to
pneumoconiosis  subtypes,  including  those
significantly  associated  with  asbestosis  (STX8,  VIM)
and  potentially  associated  with  GGPS1,  NT5C3B,
GSTM4, and ACADM. For inorganic pneumoconiosis,
MIF  was  significantly  associated,  while  PPT1  and
FBN2  were  potentially  associated.  In  silicosis,  we
identified  GM2A  and  TPK1  as  potential  candidate
genes.  In  total,  we  identified  10  genes  with  causal
relationships  to  pneumoconiosis  (Table  1 and
Supplementary Table S35).

 Phenotype-wide  Association  Analyses  Identified
Phenotypic Associations of Key Genes

Using  the  ExPheWas  online  tool,  we  linked  10
genes  to  362  self-reported  diseases,  21  manually
curated  cardiovascular  endpoints,  1,280  coherence
degrees, and 83 continuous variables. After applying
Bonferroni  correction,  we  observed  that  the
continuous variables  were predominantly  related to
lung  function  (forced  expiratory  volume  in  one
second),  lipid  levels  (cholesterol,  body  fat
percentage),  blood  parameters  (red  blood  cell
[erythrocyte]  distribution  width),  and  sex  hormone-
binding  globulin  (SHBG).  Among  self-reported
conditions,  we  identified  high  cholesterol,
hypertension,  and  cardiovascular  diseases  as  the
most  frequently  reported.  Additionally,  phecodes
showed  strong  associations  with  hyperlipidemia,
hypercholesterolemia,  and  essential  hypertension

(Supplementary Table S36).

 Predicting Potential Drugs and Molecular Docking

For asbestosis,  Zoledronic acid, Minodronic acid,
and  Ibandronate  were  identified  as  inhibitors  of
GGPS1,  while  Glutathione  and  Flavin  adenine
dinucleotide  were  found  to  target  GSTM4  and
ACADM,  respectively.  Additionally,  Artenimol  was
identified  as  a  ligand  for  the  VIM  protein.  For
inorganic  pneumoconiosis,  Palmitic  acid  was  found
to  target  PPT1,  while  Calcium  citrate,  Calcium
phosphate,  and  Calcium  phosphate  dihydrate
functioned  as  ligands  for  FBN2.  In  the  case  of
silicosis,  Lauric  acid  was  identified  as  a  target  for
GM2A,  and Thiamine acted as  a  substrate for  TPK1.
The  binding  configurations  and  molecular
interactions  of  the  14  drug  candidates  with  eight
proteins  are  illustrated  in Figure  6 and
Supplementary  Table  S37,  where  the  binding
energies for these interactions are also listed.

 DISCUSSION

In this study, we explored, for the first time, the
causal  relationships  between  two  gut  microbiota
taxa,  six  QTLs,  and  three  types  of  pneumoconiosis
using  a  combination  of  conventional  MR  and  SMR
methods.  Additionally,  we  analyzed  16S  rRNA  gene
sequencing  data  from  fecal  samples  of
pneumoconiosis  patients  and  dust-exposed  workers
as  an  external  validation  method.  This  analysis
revealed that Romboutsia acts as a protective factor
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against  silicosis,  while  Pasteurellaceae  and
Haemophilus  parainfluenzae  were  identified  as  risk
factors  for  inorganic  pneumoconiosis.  At  the  QTL
level,  our  findings  suggest  that  elevated  STX8
expression  may  increase  the  risk  of  asbestosis,
whereas higher in vivo levels of MIF could reduce the
risk  of  inorganic  pneumoconiosis.  Furthermore,
GM2A and TPK1 were identified as protective factors
against silicosis. Additionally, we examined four core
gut  microbiota  taxa  associated  with  key  asbestosis-
related  genes  and  cis-eQTLs,  including  VIM,  using
FUMA.  This  study  provides  novel  insights  into  early

pneumoconiosis prevention and potential mitigation
strategies  by  integrating  gut  microbiota  and  QTL
data within a multi-omics framework. By elucidating
the  interplay  between  gut  microbiota  and  genetic
factors,  our  findings  may  help  reduce  disease
progression and improve patient outcomes.

By  integrating  findings  from  MiBioGen,  Esteban
et  al.,  and  our  own  gut  microbiota  analysis,  we
identified  Pasteurellaceae  and  Haemophilus
parainfluenzae as potential  risk factors for inorganic
pneumoconiosis.  Notably,  our  results  revealed  that
Pasteurellaceae  levels  in  the  intestinal  microbiota
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were  significantly  higher  in  CWP  patients  than  in
dust-exposed  workers.  Conversely,  Romboutsia  was
identified  as  a  potential  protective  factor  against
asbestosis,  exhibiting  a  decreasing  trend  in  the  gut
microbiota  of  pneumoconiosis  patients.  The
Pasteurellaceae family encompasses a diverse range
of  Gram-negative  bacteria,  primarily  inhabiting  the
respiratory, gastrointestinal,  and reproductive tracts
of  animals.  Within  this  family,  the  genus
Haemophilus  has  been  strongly  associated  with
pulmonary  fibrosis,  cystic  fibrosis,  and  chronic
respiratory  infections  in  humans[23,24].  Notably,
unencapsulated  Haemophilus  influenzae  has  been
implicated  in  acute  exacerbations  of  pulmonary

fibrosis  by  significantly  inducing  interleukin-17  (IL-
17) secretion, potentially highlighting its role as a risk
factor  in  the  progression  of  pneumoconiosis[25,26].
Haemophilus  parainfluenzae,  a  commensal  of  the
human  respiratory  tract,  exhibits  ambiguous
pathogenic  potential  compared  to  Haemophilus
influenzae.  Research  suggests  that  compromised
airway  defenses,  which  delay  bacterial  clearance,
may  allow H.  parainfluenzae to  become  pathogenic
in  the  lower  respiratory  tract,  potentially  leading  to
severe  infections  such  as  pneumonia  and
bronchitis[27].  Cohort  data  indicate  that  in
pneumoconiosis  patients, H.  parainfluenzae ranks
fifth  in  abundance  (1.19%)  within  the  intestinal

 

A
(1) (2) (3)

B

C

D
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G

Figure 6. Prediction of potential  drugs candidates and molecular docking analysis.  (A) GGPS1-Zoledronic
acid;  (B)  GGPS1-Minodronic  acid;  (C)  GGPS1-Ibandronate;  (D)  PPT1-Palmitic  Acid;  (E)  GM2A-Lauric  acid;
(F) TPK1-Thiamine; (G) VIM-Artenimol. GGPS1: Geranylgeranyl Diphosphate Synthase 1; PPT1: Palmitoyl-
Protein  Thioesterase  1;  GM2A:  GM2  Ganglioside  Activator;  TPK1:  Thiamin  Pyrophosphokinase  1;  VIM:
Vimentin.
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microbiota,  significantly  exceeding its  levels  in  dust-
exposed  workers.  This  discrepancy  may  arise  from
the  fact  that  chronic  lung  inflammation  and  fibrosis
in  pneumoconiosis  patients  create  a  favorable
environment  for  bacterial  colonization  and
proliferation.  Additionally, Roseburia,  a  key  gut
microbiota member, constitutes 2%–31% of the total
bacterial  population  in  healthy  individuals  and  is
known to produce short-chain fatty acids—including
acetic acid, propionic acid, and butyric acid—through
the fermentation of dietary carbohydrates[28]. Among
these,  butyrate  has  demonstrated  anti-fibrotic
effects on fibroblasts, both directly and indirectly, by
modulating  macrophage  differentiation  and
inhibiting  histone  deacetylase  3.  Furthermore,
butyrate  may  help  mitigate  pulmonary  fibrosis  by
enhancing the body’s anti-inflammatory response[29].

Utilizing  SNPs  from  three  core  gut  microbiota
species,  we  identified  key  genes  using  FUMA.  Our
analysis  revealed  that  VIM  exhibited  overlapping
associations  across  mapping  genes,  cis-eQTLs,  and
pQTLs  within  the  deCODE  dataset,  as  well  as  eQTL
associations  in  the  eQTLGen  database.  Vimentin,  a
type  III  intermediate  filament  protein,  serves  as  a
structural  anchor  supporting  intracellular  organelles
in  mesenchymal  cells.  Its  expression  is  notably
upregulated  during  epithelial-mesenchymal
transition  (EMT),  a  crucial  process  involved  in  lung
fibrosis,  wound  healing,  and  cancer  metastasis[30].
Research  has  demonstrated  that  asbestos  exposure
induces  EMT  in  MeT-5A  cells  by  downregulating
epithelial  markers—including  E-cadherin,  β-catenin,
and  Occludin—while  upregulating  mesenchymal
markers  such  as  fibronectin,  α-smooth  muscle  actin
(α-SMA), and vimentin. Moreover, EMT activation in
alveolar  epithelial  cells  accelerates  the  progression
of  pulmonary  fibrosis[31].  Conversely,  Vimentin  also
functions as a ligand for NOD-like receptor protein 3
(NLRP3)  inflammasomes,  facilitating  inflammation
and  EMT  in  lung  fibrosis  through  the  NF-κB/NLRP3
signaling  pathway.  The  observed  decrease  in
epithelial  markers  alongside  the  increase  in
mesenchymal  markers,  including  Vimentin,  during
EMT  highlights  Vimentin  as  a  promising  early
biomarker  for  lung  fibrosis-related  conditions,  such
as pneumoconiosis.

Syntaxin  8  (STX8),  a  critical  component  of  the
endosomal SNARE complex,  which includes synaptic
binding  protein  7,  vesicle  transport  through
interaction  with  t-SNAREs  homolog  1B,  and  vesicle-
associated membrane protein 8, has been identified
as  a  risk  factor  for  asbestosis  across  all  QTL
datasets[32]. Research has shown that overexpression

of  Syntaxin  8  disrupts  the  transport  and function of
the  cystic  fibrosis  transmembrane  conductance
regulator, resulting in mucus stasis, chronic bacterial
infections,  and sustained inflammatory responses in
the airways and lungs[33]. These pathological changes
collectively  exacerbate  lung  damage  and  impair
ciliary function, thereby reducing the lungs’ ability to
expel  inhaled  particles.  This  impaired  clearance
mechanism disrupts pulmonary homeostasis,  posing
a  particular  risk  for  pneumoconiosis  patients  and
potentially contributing indirectly to the progression
of pulmonary fibrosis[34].

Migration  inhibitory  factor  (MIF)  is  a  complex
and highly  debated cytokine that  appears  to  have a
dual  role  in  pathological  conditions.  In  this  study,
MIF  was  identified  as  a  protective  factor  against
inorganic  pneumoconiosis  at  the  pQTL  level,  yet
paradoxically emerged as a risk factor at eQTL level.
This  conflicting  evidence  necessitated  a  detailed
examination  of  MIF’s  specific  mechanisms.  A  study
investigating  bleomycin-induced  pulmonary  fibrosis
in rats demonstrated that MIF knockdown alleviated
lung  damage  and  reduced  extracellular  matrix
accumulation.  This  intervention  notably  decreased
the levels of transforming growth factor-β1 (TGF-β1),
tumor  necrosis  factor-α  (TNF-α),  IL-17,
hydroxyproline,  fibroblast  growth  factor  23,  and
secreted phosphoprotein 1 (Spp1). Additionally, MIF
knockdown  suppressed  the  expression  of  CD68,
F4/80,  and  α-SMA  proteins,  effectively  mitigating
lung  inflammation  and  fibrosis[35].  Moreover,  MIF
knockdown  has  been  implicated  in  pulmonary
fibrosis  treatment,  primarily  through  two
mechanisms:  (1)  inhibiting  fibrosis via the  TGF-
β1/Smads  signaling  pathway,  and  (2)  reducing
vascular  remodeling  by  downregulating
thrombospondin-2  (Thbs2)  and  serpin  family  B
member  5  mRNA  expression.  Conversely,  MIF  also
plays  a  crucial  role  in  coordinating  both  innate  and
adaptive  immune  responses,  contributing  to  the
suppression  of  host  inflammatory  reactions  to
invading  pathogens[36].  Increasing  evidence  suggests
that  MIF  actively  modulates  macrophage  responses
during  infections  by  promoting  the  production  of
pro-inflammatory cytokines  and other  inflammatory
mediators,  including  TNF-α,  interferon-gamma,
interleukin-1β,  interleukin-2,  interleukin-6,
interleukin-8,  nitric  oxide,  cyclooxygenase-2,  and
several  matrix  metalloproteinases  and  their
inhibitors[37-39].  Furthermore,  the  methylation  of
cg10819733  has  been  suggested  to  increase  MIF
expression,  potentially  influencing  pneumoconiosis
risk.  This  observation  underscores  the  need  for
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further  research  into  MIF’s  intricate  and  context-
dependent role in pneumoconiosis pathogenesis.

This  study  represents  the  first  MR  analysis  to
integrate  protein  expression,  gene  expression,  gene
methylation,  and  gut  microbiota  composition  to
investigate  their  potential  associations  with
pneumoconiosis  risk.  To  identify  the  most  pivotal
genes,  we  utilized  a  comprehensive  multi-omics
approach,  incorporating  pQTL  data  from  deCODE
and  UKB-PPP,  expression  eQTL  data  from  eQTLGen,
the  GTEx  database  (blood  and  lung  tissue),  and
mQTL data from McRae et al. For gene and cis-eQTL
mapping,  we  integrated  findings  from  MiBioGen,
Esteban et al., and our intestinal microbiota analysis,
subsequently  superimposing  pQTL  data  to  refine
gene  selection.  Additionally,  by  comparing
asbestosis, inorganic pneumoconiosis, and silicosis at
a  multi-omics  level,  we  aimed  to  provide  insights
into personalized disease management and improve
targeted  prevention  and  treatment  strategies  for
pneumoconiosis.

Additionally,  we  assessed  the  limitations  of  our
study. Due to data source constraints, the maximum
number of pneumoconiosis-related cases included in
our  analysis  was  limited  to  675  patients,  requiring
caution when generalizing these findings to broader
populations. Furthermore, our external validation of
pneumoconiosis  cases  was  conducted  in  an  Asian
cohort,  which  may  yield  different  outcomes
compared  to  European  populations.  Moreover,  we
were  unable  to  identify  a  fully  aligned  overlap
between the MR analysis and cohort-based microbial
functional  pathways,  a  discrepancy  that  may  stem
from  methodological  inconsistencies.  This  study
exclusively  included CWP patients,  considering  their
antibiotic  use,  but  did  not  account  for  the potential
effects  of  immunomodulatory  drugs,  hormonal
therapies,  antifibrotic  agents,  or  nutritional
supplements  on  intestinal  microbiota  composition,
all  of  which  could  influence  the  results.  In  selecting
IVs,  we prioritized securing adequate IVs for further
research, opting for a P-value threshold of < 1 × 10−5

instead of  the  more  stringent  threshold  of  5  ×  10−8,
acknowledging  that  our  findings  may  be  more
susceptible to false positives. Furthermore, while we
selected intersecting positive results from one mQTL
dataset, two pQTL datasets, and three eQTL datasets
to  identify  the  most  significant  genes,  the  peak
posterior probability for hypothesis 4 (PPH4) value in
co-localization  analysis  did  not  reach  the  robust
statistical  threshold  (PPH4  =  0.7).  In  conclusion,
while  our  study  provides  statistical  insights  into  the
potential  pathogenesis  of  pneumoconiosis,  further

validation  through  animal  and  cellular  studies  is
essential to translate these findings into therapeutic
applications for the disease.

 CONCLUSION

This  study  employed  a  MR  approach  to
investigate potential causal relationships and explore
novel biological mechanisms linking multi-omics data
and  gut  microbiota  to  pneumoconiosis  risk.  Using
SMR,  we  integrated  data  from  three  eQTL  and  two
pQTL sources,  identifying two genes (STX8 and MIF)
significantly  associated  with  pneumoconiosis  risk
and  highlighting  eight  additional  genes  with
potential  associations.  Furthermore,  our  findings
indicated that methylation of cg10819733 influences
MIF  expression,  potentially  impacting
pneumoconiosis  susceptibility.  By  synthesizing
publicly  available  microbiota  data  alongside
Independent-assessment  from  a  pneumoconiosis
cohort,  we  identified  three  core  gut  microbiota
taxa—Pasteurellaceae,  Haemophilus  parainfluenzae,
and  Romboutsia—associated  with  pneumoconiosis.
Through  fine-mapping  of  genes,  cis-eQTL  analysis,
and  previous  multi-omics  evidence,  VIM  was
identified  as  an  additional  significantly  associated
gene.  Subsequently,  we  established  associations
between  key  genes  and  multiple  phenotypic  traits,
uncovering  strong  links  with  lung  function,  lipid
levels,  blood  parameters,  and  SHBG.  These  factors
may  serve  as  complementary  contributors  to
pneumoconiosis  pathogenesis.  Additionally,  by
applying predictive modeling and molecular docking
approaches,  we  identified  potential  therapeutic
agents targeting these genes and pathways. Overall,
this  study  provides  new  insights  into  the
development  of  personalized  therapeutic  strategies
for  pneumoconiosis  and  highlights  potential  drug
targets  for  screening  and  repurposing,  offering  new
directions  for  disease  management  and  treatment
optimization.
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