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Abstract

Objective　 This study aimed to identify high-risk areas for type 2 diabetes mellitus (T2DM) mortality to
provide relevant evidence for interventions in emerging economies.

Methods　  Empirical Bayesian Kriging and a discrete Poisson space-time scan statistic were applied to
identify the spatiotemporal clusters of T2DM mortality. The relationships between economic factors, air
pollutants, and the mortality risk of T2DM were assessed using regression analysis and the Poisson Log-
linear Model.

Results　 A coastal district in East Guangdong, China, had the highest risk (Relative Risk [RR] = 4.58, P <
0.01), followed by the 10 coastal districts/counties in West Guangdong, China (RR = 2.88, P < 0.01). The
coastal  county  in  the  Pearl  River  Delta,  China  (RR  =  2.24, P <  0.01),  had  the  third-highest  risk.  The
remaining  risk  areas  were  two  coastal  counties  in  East  Guangdong,  16  districts/counties  in  the  Pearl
River Delta, and two counties in North Guangdong, China. Mortality due to T2DM was associated with
gross  domestic  product  per  capita  (GDP  per  capita).  In  pilot  assessments,  T2DM  mortality  was
significantly associated with carbon monoxide.

Conclusion　  High  mortality  from  T2DM  occurred  in  the  coastal  areas  of  East  and  West  Guangdong,
especially where the economy was progressing towards the upper middle-income level.
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INTRODUCTION

D iabetes  is  the  eighth  leading  cause  of
death worldwide, with 3.4 million deaths,
and  approximately  1,015  billion  USD  of

diabetes-related  expenditure  in  2024[1-3].  China

accounted  for  0.76  million  estimated  diabetes-
related deaths in 2024 (the largest  annual  number),
and  168.9  billion  USD  of  diabetes-related
expenditure  (the  second  highest  expenditure  in  the
world)[3,4].  Type  2  diabetes  mellitus  (T2DM)  is  the
dominant  type  of  the  disease,  accounting  for  over
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90% of all  cases, and can be effectively managed by
disease prevention and control measures[5].

The mortality of T2DM is linked to many factors,
such  as  biological  and  behavioral  factors,  but  its
association  with  socioenvironmental  factors  are  still
unclear.  Studies  have  indicated  that  high  mortality
tends to be associated with economic development,
such  as  changes  in  food  consumption  patterns  with
increasing  red  meat  consumption[6,7],  air  pollutants,
and  industrial  expansion[8,9].  Long  term  exposure  to
ambient  air  pollutants,  including  ozone  (O3)  and
particulate  matter  with  particle  size  below  2.5
microns  (PM2.5),  increase  the  risk  of  T2DM.
Environmental  endocrine  disruptors  such  as
phthalates  are  linked  to  T2DM via inducing  insulin
resistance  or  gene-environment  interactions[10-12].
Further  evidence  is  required  to  verify  the  impact  of
socioenvironmental  factors.  China,  as  one  of  the
emerging  economies,  has  ever-changing  disease
patterns,  including  an  increase  in  T2DM  mortality,
along  with  economic  transition.  Its  T2DM  mortality
distribution  in  space  and  time  should  be  studied  to
explore  the  associations  with  economic  levels  and
assess the impact of different air pollutants.

Spatial  analysis  is  used  to  visualize  the
geographic  distribution  patterns  of  diseases  and
identify  their  clustering,  thereby  helping  to  identify
high-risk  areas.  Temporal  analysis,  however,
highlights disease trends over time and assesses the
potential  impact  of  risk  factors  on  diseases  using
time  series  models[13].  Previous  studies  have
generally  considered  the  association  between
diabetes and socioenvironmental factors from either
a  temporal  or  spatial  perspective.  For  example,  a
spatial  analysis  in  Indonesia  showed  a  positive
correlation  between  PM2.5 exposure  and  diabetes
prevalence[14].  Other  studies  have  focused  solely  on
temporal  aspects,  such  as  a  multi-regional  time
series  study  in  South  Korea,  which  examined  the
association  between  cold  spells  and  diabetes
mortality[15],  and  a  study  in  Jiangsu  Province,  China,
which  evaluated  the  effect  of  temperature  on
diabetes  mortality  without  considering  the  spatial
effects between cities[16].

Globally,  there  has  been  growing  recognition  of
the  value  of  spatiotemporal  analyses  in  chronic
disease  epidemiology.  Advances  in  geographic
information  systems  (GIS)  and  statistical  modeling
have enabled more detailed studies on the incidence
and mortality  of  diabetes.  For  example,  in  a  study in
Denmark  examining  the  link  between  long-term
exposure  to  air  pollutants  and  the  incidence  of
diabetes  in  a  cohort  of  nurses  found  a  significant

positive  correlation  between  PM2.5 exposure  and
diabetes  incidence  (relative  risk,  [RR]  =  1.11;  95%
confidence  interval,  [95% CI]:  1.02−1.22),  but  no
significant  association  with  particulate  matter  with
particle  size  below  10  microns  (PM10),  nitrogen
dioxide (NO2),  and nitrogen oxides (NOx)

[17].  Similarly,
a US study found that PM2.5 (Prevalence Ratio, [PR] =
1.10;  95% CI:  1.03−1.17)  and  O3 (PR =  1.06;  95% CI:
1.03−1.09)  were  associated  with  higher  diabetes
prevalence[18].  Recent  research  efforts  in  China  have
begun  to  incorporate  socioeconomic  and
environmental  disparities;  however,  comprehensive
analyses  of  spatiotemporal  clustering  remain  limited.
In  terms  of  the  analysis  of  mortality  and
socioenvironmental  factors  of  T2DM  in  China,  a
spatiotemporal  analysis  is  essential  to  fully
understand  the  complex  patterns  of  diabetes
mortality  across  areas  and  at  different  times.
Currently,  there  are  few  studies  on  the
spatiotemporal analyses of T2DM mortality. Ten years
ago,  a  relevant  national  study on the spatiotemporal
analysis of diabetes mortality in China used data from
national  disease  surveillance  points  (DSPs),  in  which
the  overall  risk  of  mortality  from  diabetes  was
assessed  in  seven  zones  instead  of  administrative
provinces  or  municipals[19].  A  recent  provincial  study
conducted  a  spatiotemporal  analysis  of  the
association  between  T2DM  mortality  and
socioenvironmental  factors  in  elderly  individuals  in
Shandong  Province,  China.  The  study  found  that
temperature  and  relative  humidity  were  significantly
associated with T2DM mortality;  however,  it  focused
solely on elderly people living in temperate monsoon
climates  with  distinct  seasons[20].  As  a  result,  there
remains  a  significant  gap  in  research  that
systematically examines the interplay between T2DM
and  socioenvironmental  factors  over  time  across  the
entire  population,  particularly  in  a  subtropical
monsoon  climate  characterized  by  abundant
precipitation  and  high  temperature.  This  is
particularly  important  when  considering
spatiotemporal  clustering  analyses  of  the  China’s
leading industrial and populous province.

China  is  a  large  country  with  diverse  economic
patterns,  living habits,  and food culture.  To conduct
the study in a more consistent social, economic, and
cultural  context,  our  study  was  conducted  in
Guangdong  Province,  China.  Guangdong  has  been
the  largest  economic  province  in  China  since  1989
with the most rapid development rate. Its total gross
domestic product (GDP) ranks among the top ten in
the  world,  surpassing  that  of  Spain,  Australia,  and
the  Netherlands,  equivalent  to  that  of  Canada  and
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South  Korea,  and  was  on  par  with  that  of  Brazil  in
2022[21,22].  If  GDP per  capita  is  taken  as  an  estimate
of  the  gross  national  income  per  capita  (GNI  per
capita) of the World Bank Analytical Classification[23],
the GDP per capita values of  Guangdong from 2014
to 2018 increased from upper-middle to high income
as a whole. It is the most populous province in China
since 2007 and had 126 million people according to
the  Seventh  Population  Census  in  2020,  which
equalled  to  that  of  Japan  or  Mexico[24,25].  Similar  to
many  emerging  economies,  Guangdong  considers
industry  as  its  main  driving  force  for  economic
development[26,27].

This  study  aimed  to  provide  novel  insights  into
diabetes mortality clustering in Guangdong Province.
We estimated the  mortality  of  T2DM in  Guangdong
using  spatiotemporal  clustering  analysis,  identified
high-risk  districts  and  counties,  preliminarily
explored  their  association  with  economic
development  and  relevant  air  pollutants,  and
analyzed  the  contributing  risk  factors  for  further
research.  Spatiotemporal  cluster  analysis  is  crucial
for  understanding  the  dynamics  of  T2DM  mortality.
By  identifying  geographic  hotspots  and  temporal
peaks,  this  approach  provides  insight  into  targeted
public health interventions. The integration of spatial
and  temporal  dimensions  allows  a  nuanced
exploration  of  the  influence  of  environmental  and
socioeconomic  factors,  which  is  essential  for
effective diabetes prevention and control strategies. 

MATERIAL AND METHODS
 

Data Collection

Guangdong,  the  industrial  province  that  ranks
first  in  China,  has  geographically  uneven  economic
development,  similar  to  that  of  China.  Guangdong
consists of four geographic zones covering 21 cities:
The  Pearl  River  Delta,  East  Guangdong,  West
Guangdong,  and  North  Guangdong  (Supplementary
Figure S1), accounting for 79.52%, 6.71%, 7.65%, and
6.13% of the total provincial GDP, respectively[28].

We  applied  for  and  obtained  the  diabetes
mortality  data  of  28  national  DSPs  in  18  cities
extracted  from  the  China  Mortality  Surveillance
System  by  registered  permanent  residence  in
Guangdong Province. The national DSPs in the China
Mortality  Surveillance  System  were  mainly
determined by GDP per capita and population, which
were  divided  into  54  layers  over  the  whole  country
by  the  national  disease  control  and  prevention
authority,  and  a  representativeness  evaluation  was

conducted[29].
The  collected  data  included  diabetes  as  the

underlying  cause  of  death  from  2014  to  2018,
including information on sex, age, place of residence,
underlying  cause  of  death,  occupation,  education,
and  place  of  death  from  the  Guangdong  Provincial
Center  for  Disease  Control  and  Prevention
(Guangdong  CDC),  China.  The  underlying  cause  of
death  was  classified  using  ICD-10  (International
Classification of Diseases 10) codes and the national
DSPs  were  representative,  as  proven  in  previous
studies[29].  These  data  are  mortality  data  covering
the  entire  population  in  the  administrative  areas  of
the  DSPs.  The  vector  map  was  obtained  from  the
Ministry  of  Natural  Resources  of  the  People’s
Republic  of  China  and  covers  122  administrative
districts/counties  and  two  cities  without
districts/counties  over  the  entire  province.
Population  information  and  GDP  per  capita  values
integrated  with  administrative  districts/counties
were  collected  from  the  Health  Commission  of
Guangdong  Province  and  Guangdong  Provincial
Bureau  of  Statistics,  China.  Air  pollutant  data  were
obtained  from  the  Ministry  of  Ecology  and
Environment of the People’s Republic of China using
the  National  Urban  Air  Quality  Real-time  Publishing
Platform  (http://�106.37.�208.233:20035/),  which
included  carbon  monoxide  (CO),  O3,  PM2.5,  PM10,
NO2 and  sulphur  dioxide  (SO2)  monitored  by  the
national air pollutant surveillance stations. 

Empirical Bayesian Kriging Interpolating

The  age-standardized  mortality  rate  (ASMR)  of
T2DM  was  estimated  using  Empirical  Bayesian
Kriging  with  the  data  from  the  28  national  DSPs  in
Guangdong.  The  reference  population  for  ASMR
calculation was the cumulative number of registered
populations of  different  ages from the 28 DSPs.  We
used  the  DSP  populations  from  2014  to  2018  to
calculate the ASMR of T2DM for each corresponding
year.  The  mapping  of  the  estimated  age-
standardized mortality rates (EAMRs) for all counties/
districts was performed using ESRI ArcGIS 10.8. 

Spatiotemporal Cluster Analysis

Based on the above EAMRs for 2014–2018, the
geolocation  (geometric  center)  and  demographic
data  of  Guangdong  and  a  discrete  Poisson  space-
time  scan  statistic  (Kulldorff’s  method)[30,31] were
used  to  test  the  distribution  of  T2DM  mortality
over  space  and  time  and  identify  high-risk
spatiotemporal  clusters.  Within  the  study  area,
assuming  that  the  deaths  due  to  T2DM  satisfied
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the  Poisson  distribution,  a  cylindrical  window  of
different  sizes  was  allowed  at  each  location  (the
bottom  of  the  cylinder  corresponds  to  the
geographical  location,  and  the  height  corresponds
to  the  time),  and  the  size  and  position  of  the
window  were  dynamically  changed.  For  each
change in the window, the log-likelihood ratio (LLR)
calculates  the  ratio  of  the  actual  and  expected
cases  inside  and  outside  the  window,  and
determines the maximum LLR value for all windows
in  all  areas  as  possible  spatiotemporal  clusters.  It
then  calculated  the  inside  and  outside  RRs  of  the
clusters,  and  statistical  tests  were  performed  to
generate  a  simulated  data  set  that  uses  Monte
Carlo  randomization  to  calculate  the P-value.  LLRs
represent the degree of clustering.

Our  study  period  was  from  January  1,  2014,  to
December  31,  2018,  and  the  geographical  overlap
was set to “none”. The maximum spatial cluster size
was  set  to  10% of  the  population  at  risk,  and  the
maximum  temporal  cluster  size  was  one  year.  The
number of  Monte Carlo simulations was 999.  When
the  hypothesis  test  of  LLR  had  a P-value  <  0.05,
counties/districts  were  considered  clustered.  ESRI
ArcGIS 10.8 was used to map all  clusters  from 2014
to 2018 over Guangdong Province.

To understand sex differences, we conducted the
above spatiotemporal  cluster analysis  separately for
males and females. 

GDP per Capita and Mortality

Based  on  the  results  of  the  spatiotemporal
cluster  analysis,  we  assessed  the  relationship
between  GDP  per  capita  values  and  RRs  in
Guangdong  from 2014 to  2018.  The  GDP per  capita
was used to estimate the GNI per capita that is used
by  the  World  Bank  Analytical  Classification  for  low,
lower  middle,  upper  middle,  and  high  income,  as
GDP was similar  to  GNI,  but  did  not  include income
from  employees  overseas  or  property  that  adds  to
the  national  total  income  production[23].  Curvilinear
regression  analysis  was  conducted  using  IBM  SPSS
Statistics version 21.0,  including a group of analyses
of  Linear,  Logarithmic,  Inverse,  Quadratic,  Cubic,
Power,  Compound,  S-curve,  Logistic,  Growth  and
Exponential Regressions. 

Air Pollutants and Mortality

To  further  understand  and  explore  the
association  between  air  pollutants  and  mortality  of
T2DM,  which  might  be  influenced  by  economic  and
industrial  development,  the  associations  between
weekly data of air pollutants and T2DM deaths were

analyzed  using  the  Spearman  Correlation  and  the
Poisson  Log-linear  Model  for  the  pilot  assessments
on  the  districts/counties  with  the  highest,  second
highest,  and  high  RRs  of  T2DM.  Analyses  were
conducted using IBM SPSS Statistics version 21.0. 

RESULTS
 

Descriptive Analysis

A total of 13,919 patients died of diabetes at 28
DSPs  in  Guangdong  Province,  China,  between  2014
and 2018.  Among these,  1,383 with type 1 diabetes
mellitus  (T1DM),  three  with  neonatal  diabetes
mellitus,  and  two with  gestational  diabetes  mellitus
were excluded. Ultimately, 12,531 T2DM cases were
selected  for  the  current  analysis,  with  a  slowly
increasing  trend  in  age-standardized  mortality  from
approximately  10.28/100,000  to  12.17/100,000
( Supplementary Figures S2 and S3). A total of 12,409
(99.03%)  cases  were  reported  in  persons  aged  >  40
years  old.  The  number  of  cases  in  working  age
patients  (those  under  60  years  old)  were  1,956
(15.61%).  Grouping  by  age  in  5-year  intervals  (≥ 30
years)  showed  that ≥ 85  years  group  (17.15%)  had
the  highest  mortality  (170.78/100,000, χ2 =
85696.587, P <  0.01)  and  the  mortality  showed  an
increasing  trend  with  age  (Linear-by-Linear
Association value = 50,775.38, P < 0.01). The number
of  male  patients  (6,419,  51.22%)  was  slightly  higher
than the reported number of female patients (6,112,
48.78%),  and  the  mortality  in  males  and  females
showed  no  significant  difference  (Supplementary
Figure  S2).  Moreover,  regarding  educational
background,  junior  high  school  or  below  accounted
for the vast majority of deaths (89.17%). The highest
represented  occupations  were  farmers,  retired
personnel,  and  the  unemployed  (47.90%,  22.28%,
and  13.59%,  respectively).  Furthermore,  65.23% of
the  patients  died  at  home  and  31.34% died  in
hospitals. The details are provided in Supplementary
Table S1. 

Spatial Interpolating

The  mortality  distribution  of  districts/counties
over  Guangdong  Province  was  estimated  based  on
the ASMRs of T2DM in 28 DSPs from 2014 to 2018: A
high  mortality  coastal  area  on  East  Guangdong  had
been formed since 2014. By 2016, the coasts of East
and West Guangdong were the main areas with high
mortality,  which  gradually  decreased  to  the
surrounding  areas.  Finally,  in  2017  and  2018,  the
overall  pattern continued,  but  with a  slow decrease
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in  mortality  (Figure  1).  In  2014,  the  EAMRs  ranged
from 0.51 to 47.32, including a coastal district in East
Guangdong located in the highest EAMR area (23.91
to  47.32).  In  2015,  the  EAMRs  ranged  from  3.53  to

37.10,  including  a  coastal  district  and  part  of  a
neighbouring  county  of  the  same  city  in  East
Guangdong located in the highest EAMR area (20.54
to  37.10).  In  2016,  the  EAMRs  ranged  from  4.87  to

 

0.51−5.58
5.58−7.94
7.94−13.012
13.02−23.91
23.91−47.32

3.53−7.36
7.36−9.23
9.23−13.06
13.06−20.94
20.94−37.10

4.87−7.94
7.94−9.18
9.18−12.25
12.25−19.79
19.79−38.32

4.61−8.25
8.25−10.10
10.10−13.74
13.74−20.89
20.89−34.92

4.56−7.97
7.97−10.06
10.06−13.47
13.47−19.07
19.07−28.25

A. 2014 B. 2015

C. 2016 D. 2017

E. 2018

Figure 1. The spatial distribution of EAMRs (estimated age-standardized mortality rates) on T2DM (type 2
diabetes mellitus) over Guangdong Province, China from 2014 to 2018. GS(2019)1822.
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38.32,  including one coastal  district  and two coastal
counties  of  the  same  city  in  East  Guangdong,  and
three  districts  of  two  cities  in  the  Pearl  River  Delta
located in the highest EAMR area (19.79 to 38.32). In
2017,  the  EAMRs  ranged  from  4.61  to  34.92,
including  one  coastal  district  and  two  coastal
counties  of  the  same  city  in  East  Guangdong,  three
districts  of  two  cities  in  the  Pearl  River  Delta,  a
coastal  city  (including  four  districts  and  seven
counties), and parts of one county and one district of
a  neighbouring  city  in  West  Guangdong  located  in
the highest EAMR area (20.89 to 34.92). In 2018, the
EAMRs  ranged  from  4.56  to  28.25,  including  three
districts  of  two  cities  in  the  Pearl  River  Delta,  a
coastal  city  (including  four  districts  and  seven
counties),  and part of  one county of a neighbouring
city in West Guangdong located in the highest EAMR
area (19.07 to 28.25). 

Spatiotemporal Clustering Analysis

Spatiotemporal  clustering  analysis  revealed  six
clusters in Guangdong from 2014 to 2018. The high-
risk  clusters  were  generally  concentrated  in  the
coastal  areas of  East  and West  Guangdong,  and the
cluster with the highest risk was a coastal district of
East Guangdong (RR = 4.58, LRR = 191.45, P < 0.01),
followed  by  10  coastal  districts/counties  of  West
Guangdong (RR = 2.88, LRR = 1,131.70, P < 0.01); the
third  was  a  coastal  county  of  the  Pearl  River  Delta
(RR =  2.24, LRR =  56.02, P <  0.01),  followed  by  two
coastal counties of East Guangdong (RR = 1.91, LRR =
100.86, P < 0.01), a coastal district of the Pearl River
Delta  (RR =  1.68, LRR =  20.39, P <  0.01),  13
districts/counties  of  the  Pearl  River  Delta  and  two
counties  of  North  Guangdong  (RR =  1.33, LRR =
53.40, P < 0.01) (Table 1 and Figure 2).

The geographic distribution of T2DM mortality in
males  and  females  showed  similar  trends  to  the
overall  analysis.  The  difference  was  that  the  RRs  of
females among the high-risk clusters were narrower
in the range (1.67 ≤ RR ≤ 2.55, P < 0.01) than that of
males  (1.25 ≤ RR ≤ 4.29, P <  0.01).  The  specific
manifestation was that, except for the district (male
RR = 4.29, female RR = 1.67) and two counties (male
RR =  1.76,  female RR =  1.27)  in  East  Guangdong,
females  were  at  higher  risk  than  counterpart  males
in  related  high-risk  districts  and  counties  in  West
Guangdong  and  the  Pearl  River  Delta
(Supplementary  Figures  S4–S7  and  Supplementary
Tables S2–S3). 

GDP per Capita and RR

According  to  the  results  of  the  spatiotemporal

clustering  analysis,  there  were  in  total  30
counties/districts  (RRs  between  1.33  to  4.58)  of  8
coastal  cities  belonging  to  East  Guangdong
(Shanwei),  West  Guangdong  (Zhanjiang,  Maoming),
the  Pearl  River  Delta  (Guangzhou,  Shenzhen,
Zhongshan, Huizhou, Jiangmen) within the above six
clusters,  which  were  highlighting  the  coastal  areas.
We conducted a curvilinear regression to analyze the
relationship between GDP per capita values and RRs
in  the  30  counties/districts  from  2014  to  2018.
The  GDP  per  capita  values  (CNY  15,261.09  to  CNY
343,936.00)  were  approximately  equal  to  USD
2,389.89  to  USD  53,860.38.  The  results
demonstrated  that  11  regression  models  (Linear,
Logarithmic,  Inverse,  Quadratic,  Cubic,  Power,
Compound,  S-curve,  Logistic,  Growth,  and
Exponential) fit this association significantly.

The  performance  of  the  above  11  models
included  an  ANOVA  (F value)  between  19.86  and
67.19,  and  all P values  were  <  0.01.  Therefore,  we
considered  that  the  Power  Regression  fit  the
relationship better:

y = 3.00x −0.25 (F = 67.19, P < 0.01) (Figure 3).
According  to  the  Power  Regression,  those

counties/districts that were progressing from lower-
middle income (GNI  per  capita  values between USD
996  and  USD  4,125  )  to  upper-middle  income  (GNI
per  capita  values  between  USD  3,896  and  USD
12,735)  according  to  the  World  Bank  Analytical
Classifications  criteria  from  2014  to  2018[32] had
higher RRs for T2DM mortality. 

Air Pollutants and Mortality

The  Spearman  Correlations  between  air
pollutants  and  mortality  from  T2DM  based  on
weekly data from the district with the highest RR (RR
= 4.58) in East Guangdong and the district with high
RR (RR = 1.33) in the Pearl River Delta of Guangdong
showed  no  significant  correlations  between  air
pollutants  and  mortality  from T2DM.  When it  came
to the county with the second highest RR (RR = 2.88)
in  West  Guangdong,  the  correlation  analyses
demonstrated that only CO ( r = −0.49, 95% CI: −0.67
to −0.29, P < 0.05) had a significant correlation with
mortality.  The  correlations  between  CO,  PM2.5,  O3,
PM10,  NO2 and  SO2 showed r values  <  0.70  in  the
correlation  analyses  of  the  two  districts  and  one
county, respectively.

According  to  the  correlation  analyses  and
relevant literature[33-35], the final multivariate models
included CO, O3,  and PM2.5 for the two districts and
one  county,  respectively.  Results  of  the  final  model
in the district with the highest RR were as followings:
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The risk of mortality due to T2DM increased by 159%
for every 1 mg/m3 of CO (incidence rate ratio, [IRR] =
2.59, 95% CI: 1.31 to 3.87, P < 0.05) concentration in
the  air;  O3 and  PM2.5 were  not  significantly
associated  with  the  mortality  risk  of  T2DM
(Supplementary  Tables  S4–S5).  While  the risk of
mortality  in  the  final  models  in  the  county  with  the
second  highest  RR  and  the  district  with  high  RR
decreased along with the CO concentration in the air

(IRR = −0.98, 95% CI: −1.24 to −0.72, P < 0.05 and IRR
= −1.69,  95% CI: −1.15  to −0.28, �P <  0.05,
respectively).  O3 and  PM2.5 were  not  significantly
associated  with  the  mortality  risk  of  T2DM
(Supplementary Tables S6–S9). 

DISCUSSION

This study was conducted in Guangdong Province

 

Table 1. The spatiotemporal clusters of T2DM (type 2 diabetes mellitus) mortality and related RRs (relative
risks) in Guangdong Province, China from 2014 to 2018

Cluster District/ County City Time Frame Cases Expected cases *LLR P value RR

1 Chengqu Shanwei 2014/1/1 to 2014/12/31 259 56.72 191.45 < 0.01 4.58

2

Chikan Zhanjiang 2017/1/1 to 2017/12/31 2,879 1,037.12 1,131.70 < 0.01 2.88

Xiashan

Potou

Mazhang

Suixi

Xuwen

Lianjiang

Leizhou

Wuchuan

Maonan Maoming

3 Huidong Huizhou 2017/1/1 to 2017/12/31 223 99.98 56.02 < 0.01 2.24

4
Haifeng Shanwei 2016/1/1 to 2016/12/31 593 311.70 100.86 < 0.01 1.91

Lufeng

5 Huicheng Huizhou 2017/1/1 to 2017/12/31 179 106.66 20.39 < 0.01 1.68

6

Nansha Guangzhou 2018/1/1 to 2018/12/31 1,451 1,095.95 53.40 < 0.01 1.33

Luohu Shenzhen

Futian

Nanshan

Baoan

Yantian

Pingshan

Longhua

Pengjiang Jiangmen

Jianghai

Kaiping

Heshan

Zhongshan Zhongshan

Luoding Yunfu

Xinxing

　　Note. *LLR refers to Log Likelihood Ratio.
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in  South  China,  the  leading  industrial  and  populous
province  with  uneven  economic  development  like
China,  as  an  example  for  all  age  groups  of  county-
level  analysis,  and  found  that  the  main  areas  with
high mortality of T2DM were in the coastal areas of
East  and  West  Guangdong,  especially  those  with
economies  progressing  towards  the  upper-middle
income  level.  CO  was  significantly  associated  with
T2DM mortality in the pilot exploration.

This  was  the  first  study  on  the  spatiotemporal
clustering  of  T2DM  mortality  for  all  age  groups  in
South China at the county level[19] and was a follow-
up  study  to  that  conducted  by  Zhou  et  al.  (2015)
concluded  that  diabetes  mortality  was  higher  in
Northwest and Northeast China than in South China,
and  was  higher  in  urbanized  areas  than  in  rural
areas,  based  on  data  from  161  national  DSPs  of  31
provinces  across  the  country  from  2006  to  2012[19].
In  patients  with  T2DM,  the  risk  of  death  is  mostly
due  to  poor  blood  glucose  control  and  life-
threatening  complications[36].  T2DM  management
includes  priorities  such  as  a  healthy  diet,  regular
physical  exercise,  maintaining a healthy weight,  and
prescribing  oral  hypoglycemic  drugs  and  insulin,  if
necessary,  to  control  blood  glucose  levels.  In  this

study, the clusters with the highest risk were located
on the coasts of East and West Guangdong, in which
the economy was developing towards upper-middle
income,  but  not  in  the  developed  districts  and
counties. Possible reasons for this are as follows.

First,  although  the  economy  is  developing,  the
comparative  lack  of  medical  and  healthcare
resources  has  led  to  an  increased  risk  of  mortality
from  T2DM.  The  International  Diabetes  Federation
(IDF)  found  that  low  and  middle  income  countries,
especially  those  developing  from  low  to  middle
income  ones,  had  the  highest  diabetes
mortality[2,3,37]. Meanwhile, the lack of timely medical
and healthcare treatment for complications[38,39] due
to  poverty  could  also  increase  the  risk  of  T2DM
mortality.  Among  the  deaths  in  this  study,  in  terms
of  the  places  of  death,  more  than  60% (65.23%)  of
the  deaths  occurred  at  home.  Meanwhile,  although
the  economy  was  developing  in  high-risk
counties/districts  in  this  study,  T2DM  is  a  costly
disease  owing  to  its  chronic  nature[40,41].  Previous
literature[42-45] demonstrated that the average annual
expenditure  for  T2DM  in  low- and  middle-income
countries  ranged  from  USD  29.91  to  USD  237.38,
including  direct  and  indirect  costs;  in  China,  the
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Figure 2. The  map  of RRs  (relative  risks)  of  T2DM  (type  2  diabetes  mellitus)  mortality  in  Guangdong
Province, China from 2014 to 2018. GS(2019)1822.

592 Biomed Environ Sci, 2025; 38(5): 585-597



average annual  expenditure for  diabetes  patients  in
rural  areas  reached  CNY  6,450  (approximately  USD
998.46),  and  that  in  cities  was  CNY  15,652
(approximately  USD  2,442.93),  accounting  for
approximately  46% of  per  capita  disposable  income
in  2016.  In  contrast  to  the  IDF,  the  high-risk
counties/districts  in  this  study,  especially  those
ranking among the top three, were developing from
lower-middle  income towards  upper-middle  income
in  the  emerging  economy  according  to  the  World
Bank  Analytical  Classification  criteria  from  2014  to
2018[32].  Therefore,  the  above  expenses  would  still
lead to a heavy economic burden for a lifetime once
the  disease  is  diagnosed,  which  would  probably
hamper  people  from  continuing  medical  treatment
and going to hospitals.

Second, the pilot exploration in the two districts
and the county with the highest, second-highest, and
high  mortality  rates  found  that  CO  was  significantly
associated  with  T2DM  deaths.  This  result  is
consistent  with  a  few  previous  studies  in  which  CO
exposure  was  significantly  associated  with
gestational  diabetes  mellitus  (GDM)  and  increased
GDM  severity  in  a  cohort  living  in  Northeast
China[46-49].  A  retrospective  population-based  cohort
study[50] showed  that  CO  poisoning  made  people
more  susceptible  to  diabetes  due  to  the  possible
disruption  of  the  endocrine  system  caused  by
hypoxic  injury,  with  impacts  on oxidative  stress  and
endothelial  dysfunction[51-54].  As  an  air  pollutant,  CO
has not received much attention when analyzing the
association  between  pollution  and  diabetes
outcomes  compared  to  PM2.5, PM10,  NO2,  SO2 and

O3.  For  example,  a  systematic  review  by  Li  et  al.
(2014)  found  that  air  pollution  was  associated  with
diabetes-related  mortality,  with  only  2  out  of  12
studies  including  CO  as  a  pollutant[8].  Another
example is the study conducted by Wu et al. (2021),
who  also  explored  the  relationship  between  air
pollutants  and  diabetes-related  mortality,  but
without  CO[48].  However,  CO  emissions  have  been
increasing  with  the  rapid  development  of  the
economy,  such  as  the  construction  of  civil  airports,
coal-fired power plants, and car emission[55-57]. More
attention is worth paying to verifying the association
between CO and T2DM mortality[8,46,58-60].

Third,  insufficient  self-care  awareness  regarding
the  risk  of  death  caused  by  T2DM  leads  to  an
increased  risk  of  mortality.  Owing  to  the  complex
interactions between the environment, lifestyle, and
clinical  and  genetic  factors,  self-management  of
diabetes  is  multidimensional.  Education  and  self-
care  awareness  has  greatly  influenced  clinical
progress  and  results.  The  patients  who  died  in  this
study were not  well  educated,  and most  completed
junior  high  school  or  lower  level  of  education
(89.17%).  Farmers  and  the  unemployed  accounted
for the majority of occupations (47.90% and 13.59%,
respectively). The awareness of self-care for diseases
is  generally  weak  among  the  above  groups  of
people[61].  Even  for  patients  with  T2DM  who  took
oral  medications  and  diet,  and  engaged  in  exercise,
the  monthly  self-blood  glucose  monitoring  was  less
than  once,  and  the  rate  of  blood  glucometer
ownership  in  high-income  areas  (GNI  per  capita
>  USD  12,735)  was  less  than  18% in  Guangdong[62].
Meanwhile, they were reluctant to take the initiative
to  seek  medical  treatment,  and  only  31.34% of  the
deaths in this study occurred in medical institutions.
It  was  also  shown  that  even  for  people  who  often
need  to  visit  medical  institutions  for  treatment,
awareness  of  diabetes  self-care  still  needed  to  be
improved through health education, and their needs
were  still  strong  for  designated  professionals  from
hospitals to follow up and guide the self-monitoring
and  management  of  diabetes  outside  the
hospital[63-65].  Thus  Patient-Centered  Collaborative
Care is  an actual  need and future trend that  should
be  supported  by  a  combination  of  policy,  system,
and patient[66,67].

Finally,  the  management  of  diabetes  was
strengthened  at  the  national  and  provincial  levels
from 2014 to 2018, which was a potential reason for
the  spatial  distribution  to  show  a  slow  decrease  in
T2DM  mortality  in  2017  and  2018.  At  the  national
level, the number of patients with diabetes managed
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nationwide  reached  25  million  by  the  end  of  2014,
gradually  forming  a  comprehensive  and  continuous
standardized  management  system  for  diabetes  in
China[68].  In  2015,  the  General  Office  of  the  State
Council  of  the  People’s  Republic  of  China  issued
guidelines  on  promoting  the  construction  of  a
graded  diagnosis  and  treatment  system[69],
considering  diabetes  as  one  of  the  breakthrough
diseases  in  the  graded  diagnosis  and  treatment  of
chronic  diseases,  and  carrying  out  pilot  projects
nationwide.  Through  graded  diagnosis  and
treatment,  patients  can  enjoy  higher  levels  of
medical  services  at  the  local  level.  In  combination
with basic public health service projects, Guangdong
Province,  China,  has  focused  on  promoting  the
management  of  patients  with  chronic  diseases,
including  diabetes.  According  to  the  national
guidelines  for  the  prevention  and  management  of
diabetes  at  local  levels  (2018)[70],  basic  medical  and
health  institutions  in  Guangdong  Province  were
equipped with corresponding testing equipment and
essential  drugs  to  provide  comprehensive,
continuous,  and  responsible  medical  and  health
management services for patients with diabetes, and
established  a  cooperation  mechanism  with  superior
hospitals to achieve two-way referral.

Based  on  the  above  discussion,  it  will  be
necessary to investigate the proportion of healthcare
institutions  compared  to  the  population  they  serve
in  high-risk  districts/counties  and  provide  feasible
suggestions on improving the healthcare services for
T2DM  in  future  studies  if  there  is  still  a  need  for
primary  healthcare  after  the  strengthening  of
diabetes  management  at  local  levels.  Second,  the
focus  on  CO  in  this  study  was  determined  by  the
availability and reliability of CO data during the study
period  alongside  preliminary  findings  that  indicated
a  stronger  association  between  CO  exposure  and
T2DM mortality  than with other pollutants.  CO may
contribute to T2DM mortality  through its  effects  on
oxidative  stress  and  endothelial  dysfunction,  as
suggested  in  the  existing  literature.  Future  research
should  prioritize  multi-pollutant  models  to
comprehensively  evaluate  the  combined  effects  of
CO,  NO₂,  SO₂,  and other  socioenvironmental  factors
on  T2DM  mortality  outcomes.  Moreover,  effect
modifiers such as area economic development levels
and  air  pollution  variations  were  explored  through
stratified  analyses  to  identify  differential  impacts
across  geographic  areas.  Future  studies  could
enhance  these  analyses  by  incorporating  additional
behavioral  and  healthcare-related  factors  to  assess
potential  confounders  and  effect  modifiers  more

comprehensively.
The  strengths  include  that  the  study  provides  a

detailed analysis of the districts/counties level T2DM
mortality data in a more consistent social, economic,
and cultural context, as it was conducted within the
most  populous  economic  province  with  high  GDP
values  that  surpassed  that  of  many  developed
countries in the world and was progressing towards
a high income level during the study period. Second,
unlike most previous studies, the analyzed data only
included T2DM, which could be effectively improved
by  disease  prevention  and  control  interventions.
T1DM  and  other  types  of  diabetes  mellitus  were
excluded.  Third,  through  geographic  and  spatial
maps,  the  estimated  situation  of  the  province’s
mortality due to T2DM and the distribution of high-
risk  clusters  can  be  visually  displayed,  which  is
convenient  for  further  exploration  and  analysis  and
the adoption of targeted intervention measures.

However, this study also has its limitations. There
are  many  factors  that  affect  the  development  of
T2DM,  the  most  influential  one  being  the  lifestyle
related to urbanization, but limited by data sources,
behavioral risk factors for mortality from T2DM, such
as  smoking,  drinking,  sedentary  lifestyle,  diet,
metabolic  risk  factors  (such  as  overweight/obesity,
high blood pressure, and cholesterol levels), and the
prevalence  of  T2DM  were  not  available  in  the
mortality  surveillance  data,  and  thus  were  not  able
to  be  evaluated.  Moreover,  limited  by  data
availability,  the  study  period  covered  5  years  only,
which is comparatively short, and further studies are
necessary  in  the  future.  Therefore,  future  research
should focus on collecting data on the risk factors for
behavior and metabolism based on the collection of
mortality  surveillance  data  for  an  in-depth
evaluation,  combined  with  expanded
socioenvironmental  factors  for  a  longer  period.
Moreover,  future  research  should  consider
employing a robust Bayesian spatiotemporal  model,
rather  than  relying  solely  on  traditional
spatiotemporal  clustering  analysis,  to  assess  the
relationship  between  T2DM  mortality  and
socioenvironmental factors. Bayesian models offer a
more  flexible  and  statistically  rigorous  framework
that can better account for uncertainties in both the
spatial and temporal data dimensions. By integrating
prior  knowledge  and  providing  probabilistic
estimates,  these  models  can  enhance  the  accuracy
and  reliability  of  the  analysis,  offering  a  deeper
understanding  of  the  complex  interactions  between
environmental  factors  and  disease  outcomes  over
time  and  across  different  regions.  This  approach  is
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particularly valuable for identifying subtle trends and
providing  nuanced  insights  into  the  spatial  and
temporal dynamics of T2DM mortality. 

CONCLUSION

The  coastal  areas  in  East  and  West  Guangdong
have  a  higher  risk  of  mortality  from  T2DM  and  a
gradually  decreasing  geographic  distribution  trend
into the surrounding areas. In high-risk areas, coastal
districts/counties  in  which  the  economy  was
progressing  from  lower-middle  to  upper-middle
income  levels,  had  a  higher  risk.  Pilot  assessments
have  indicated  that  air  pollutants,  specifically  CO,
was  significantly  associated  with  T2DM  mortality.
This  study  provides  the  first  step  in  conducting
research  on  the  socioeconomic  factors  related  to
T2DM mortality in South China.
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