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Abstract

Objective　Humans  are  exposed  to  complex  mixtures  of  environmental  chemicals  and  other  factors
that  can  affect  their  health.  Analysis  of  these  mixture  exposures  presents  several  key  challenges  for
environmental  epidemiology  and  risk  assessment,  including  high  dimensionality,  correlated  exposure,
and subtle individual effects.

Methods　We proposed a novel statistical approach, the generalized functional linear model (GFLM), to
analyze  the  health  effects  of  exposure  mixtures.  GFLM  treats  the  effect  of  mixture  exposures  as  a
smooth  function  by  reordering  exposures  based  on  specific  mechanisms  and  capturing  internal
correlations to provide a meaningful  estimation and interpretation.  The robustness and efficiency was
evaluated under various scenarios through extensive simulation studies.

Results　We  applied  the  GFLM  to  two  datasets  from  the  National  Health  and  Nutrition  Examination
Survey (NHANES). In the first application, we examined the effects of 37 nutrients on BMI (2011–2016
cycles).  The  GFLM  identified  a  significant  mixture  effect,  with  fiber  and  fat  emerging  as  the  nutrients
with  the  greatest  negative  and  positive  effects  on  BMI,  respectively.  For  the  second  application,  we
investigated  the  association  between  four  perfluoroalkyl  substances  (PFAS)  and  gout  risk  (2007–2018
cycles).  Unlike  traditional  methods,  the  GFLM  indicated  no  significant  association,  demonstrating  its
robustness to multicollinearity.

Conclusion　 GFLM  framework  is  a  powerful  tool  for  mixture  exposure  analysis,  offering  improved
handling of correlated exposures and interpretable results. It demonstrates robust performance across
various scenarios  and real-world applications,  advancing our  understanding of  complex environmental
exposures and their health impacts on environmental epidemiology and toxicology.
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INTRODUCTION

Humans  are  exposed  to  complex  mixtures  of
environmental  chemicals  and other  factors  that  can
affect  their  health.  The  importance  of  studying
mixed exposures has been increasingly recognized in
recent  years[1,2].  For  example,  a  study  on  prenatal
exposure to multiple endocrine-disrupting chemicals
revealed associations with altered cognitive function
in children[3], whereas another investigation revealed
that  a  mixture  of  air  pollutants  was  linked  to
increased cardiovascular  disease risk4.  Analyzing the
health  effects  of  these  multi-pollutant  or  multi-
exposure mixtures presents several key challenges in
environmental  epidemiology  and  risk  assessment.
First,  the  mixture  exposure  data  are  often  high-
dimensional,  with  the  number  of  exposures
approaching  or  exceeding  the  sample  size.  Second,
exposures within a mixture are frequently correlated
with  each  other,  leading  to  issues  with
multicollinearity  in  traditional  regression  models.
Third, individual exposures often exert subtle effects
that may not be statistically significant on their own.
However, when these exposures accumulate in large
numbers,  they  can  potentially  have  a  significant
effect  on  health  outcomes[5,6].  The  primary  goal  of
mixture exposure studies is to test the overall effect
of  combined  exposure  on  health  outcomes  while
adjusting  for  relevant  covariates.  In  many  cases,
researchers  aim  to  determine  the  relative
contributions  of  individual  exposures  within  a
mixture[7,8].

Several  statistical  approaches  have  been
developed  to  address  the  challenges  in  analyzing
exposure  mixtures.  A  weighted quantile  sum (WQS)
regression  constructs  a  weighted  index  of  the
mixture components to estimate the overall mixture
effect  while  identifying  the  relative  importance  of
individual  exposures[9].  WQS  is  computationally
efficient  and  provides  easily  interpretable  results;
however,  it  assumes that  all  exposures  have effects
in  the  same  direction,  which  may  not  always  be
realistic.  An  extension,  known  as  the  two-index
WQS,  allows  for  exposures  with  effects  in  opposite
directions  by  constructing  two  separate  indices[10].
This approach provides more flexibility, but may still
struggle  with  highly  correlated  exposures.  Quantile-
based  g-computation  further  extends  the  WQS
framework  by  allowing  exposure  to  effects  in

opposite  directions  and  providing  unbiased
estimates  of  the  overall  mixture  effect[11].  However,
it  is  based  on  a  generalized  linear  regression
framework  and  may  not  fully  capture  the  complex
nonlinear exposure-response relationships.  Bayesian
kernel  machine  regression  (BKMR)  can  handle  high-
dimensional  data  and  provides  a  framework  for
variable  selection.  However,  its  results  can  be
difficult  to  interpret,  and  the  method  is
computationally intensive for large datasets[12].

In  this  study,  we  propose  a  novel  statistical
approach  for  analyzing  the  health  effects  of
exposure  mixtures  using  functional  data  analysis
(FDA)  techniques.  This  method  treats  the  effect  of
mixture exposure as a smooth function and captures
internal  correlations  to  provide  meaningful
estimation  and  interpretation.  This  idea  is  inspired
by  approaches  used  in  analyzing  single  nucleotide
polymorphism  (SNP)  data,  which  share  similarities
with  mixture  exposure  data  in  that  individual
components  may  have  subtle  effects,  but  their
combination  can  significantly  impact  outcomes[13,14].
Our  method  leverages  the  strengths  of  the  FDA  to
handle  the  high-dimensional  and  correlation
structure  inherent  in  mixture  exposure  data  while
allowing  for  flexible  modeling  of  nonlinear  mixture
exposure‒response relationships. We developed this
approach, conducted extensive simulation studies to
evaluate its robustness and efficiency, and applied it
to  analyze  two  datasets  from  the  National  Health
and  Nutrition  Examination  Survey  (NHANES).  This
new framework provides a powerful tool for mixture
exposure  analysis,  offering  an  improved handling  of
correlated exposures and interpretable results. It has
the  potential  to  advance  our  understanding  of
complex  environmental  exposures  and  their  health
impacts,  with  applications  in  various  fields  of
environmental epidemiology and toxicology. 

METHODS
 

Generalized Functional Linear Model (GFLM)
 

n
m

m
ϣ < ⋯ < m i
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Model　Consider  individuals  with  measured  data
for a mixture of  exposed substances.  We assume
that  the  exposures  are  sorted  in  a  random order

 in  the  collected  dataset.  For  the  th
individual,  let  denote  the  response  of  interest,
which  can  be  either  quantitative  or  dichotomous,
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Ei = (eiϣ,⋯, eim)T m
Zi = (ziϣ,⋯, zic)T denote  the  measured  level  of 

exposures, and  denote the covariates.
To  relate  the  exposure  mixtures  to  the  response,
while  adjusting  for  covariates,  we  constructed  the
following model:

g (E (yi)) = αϢ + ZTi α +∑m
j=ϣ eijβ (xj) , (1)

g (⋅)
αϢ α

c × ϣ
β (xj) (j = ϣ,⋯,m)

xj
β (x)

x

in  which  is  an  identical  link  for  the
quantitative  response  and  logit  link  for  the
dichotomous  response,  is  the  overall  mean,  is
an  vector  of  regression  coefficients  for
covariates,  and  is  the  exposure
effect  function  (EEF)  of  position .  Under  the
functional regression framework,  is assumed to
be  a  smooth  function  to  reduce  the  number  of
coefficients  needed  to  be  estimated,  whereas,  in
practice, it is discrete and assumed to be measurable
at position . 

ejϣ
ejϤ
ejϣ

ejϤ

Δ
β (⋅)

Qi(= Ϣ, ϣ, Ϥ, ϥ)
Ei (Δϣ,⋯, Δm)

Qi = (qiΔϣ ,⋯, qiΔm )T

Estimation  of  EEF　 Generally,  in  research  studies,
there  is  no  inherent  order  relationship  among
exposures. These are typically recorded randomly in
a dataset, meaning that any two adjacent exposures
may  be  positively,  negatively,  or  uncorrelated.
However,  Model  (1)  assumes  that  the  effect  of
exposure  is  a  smooth  function,  implying  that  the
arrangement  of  exposures  cannot  be  random.
Consider the following scenario: Suppose that  and

 are two adjacent exposures in the dataset, where
 is  positively  correlated  with  the  outcome,  but

where  is negatively correlated. In this case, a true
effect function needs to transition from a positive to
a  negative  value  within  a  short  interval.  This  is
unrealistic  for  achieving  an  estimated  smooth
function  without  overfitting.  Therefore,  exposures
should  be  sorted  according  to  a  mechanism  to
obtain  a  well-representative  effect  function .  To
mitigate  the  impact  of  varying  measurement  units
on  effect  size  estimation,  all  exposure
measurements  were  transformed  into  quartiles  or
decimals.  Let  denote  the  quartile
version of  the  exposure  data ,  where  is
the  new  order  of  the  exposure;  then,  we  can  use

 to substitute Ei as

g (E (yi)) = αϢ + ZTi α +∑Δm
j=Δϣ

qijβ (xj) . (2)

β (x)
ψk (t) , (k = ϣ,⋯, K, K < m)

To estimate the EEF , we can use an ordinary
linear  square  (OLS)  smoother15.  Under  the  OLS
framework, let  be a series of
basis  functions.  Two  types  of  commonly  used  basis

Bk (t) , k = ϣ,⋯, K
FϢ (t) = ϣ, FϤr−ϣ (t) = sin (Ϥπrt) ,

FϤr (t) = cos (Ϥπrt) , r = ϣ,⋯, (K − ϣ) /Ϥ
K

β (x)
functions  are  (1)  the  B-spline  basis 
and  (2)  the  Fourier  basis 
and .  For  the
Fourier  basis,  is  a  positive  odd  integer15-19.  Then,

 can be expanded as

β (x) = (ψϣ (x) ,⋯,ψK (x)) (βϣ,⋯,βK)T ∶= ΨB, (3)

Ψ m × K
B = (βϣ,⋯,βK)Twhere  is  an  matrix  and  where

 is  a  vector  of  coefficients.  Thus,
Model (1) can be rewritten as

g (E (yi)) = αϢ + ZTi α +∑Δm
j=Δϣ

qijβ (j) = αϢ + ZTi α + QT
i ΨB,

(4)

Wi = QT
i Ψin which .

Note that

g (E (yi∣Qi = ϣ)) − g (E (yi∣Qi = Ϣ)) = ϣTΨB, (5)

ϣ m × ϣ ΨB
m × ϣ ϣTΨB

ΨB

where  is an  vector of size 1. Note that  is
the  vector,  is the sum of all the elements
of ,  or  the  total  effect  size  of  mixture  exposure,
and  is  the  mean  change  in  the  outcome  when  the
levels  of  all  the  exposures  increase  by  one  quartile
simultaneously.  A  95% confidence  interval  (CI)  was
estimated using the bootstrapping method. 

β (x)
Ordering  Mechanism　 The  order  of  exposure
significantly  influenced  the  estimation  and
extrapolation  of .  In  this  study,  we  propose
three common ordering mechanisms, acknowledging
that other sorting approaches may be selected based
on specific research contexts.

I.  Customized  Ordering:  This  method  allows
researchers  to  order  exposures  based  on  their
understanding  of  the  research  background.  It
leverages  domain  expertise  to  create  meaningful
sequences of exposures.

II.  Correlation-based  Ordering:  This  approach
orders  exposures  based  on  their  interrelationships,
positioning  highly  correlated  variables  close  to  one
another.  For  example,  hierarchical  clustering can be
employed  to  arrange  variables  according  to  the
resulting  dendrogram.  Ordering  results  can  vary
significantly  depending  on  the  definition  of  the
distance matrix.

ϣ − Σ Σi. Define , where  is the pairwise correlation
matrix  of  exposures,  as  the  distance  matrix;  then,
exposures  with  high  positive  correlations  are
positioned  closer,  whereas  those  with  strong
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negative correlations are positioned farther apart.
ϣ − ∣Σ∣ii.  Define  as  the  distance  matrix;  then,

exposures with strong correlations (either positive or
negative) are placed closer together,  whereas those
with  correlations  closer  to  0  are  positioned  farther
apart.

III.  Association-based  Ordering:  This  method
orders  exposures  based  on  the  strength  of  their
associations with an outcome. Variables with similar
levels  of  association  with  the  outcomes  were
positioned closer to each other.

Unlike  traditional  regression  methods,  where
multicollinearity  can  lead  to  unstable  parameter
estimates,  the  GFLM  addresses  this  challenge
through  its  functional  smoothing  approach.  When
highly  correlated  exposures  are  ordered  adjacently,
their  effects are smoothed together through a basis
function  expansion,  effectively  treating  them  as
functional  units rather than competing independent
variables.  This  smoothing  naturally  regularizes  the
effect  estimates,  preventing  the  instability  typically
observed in standard regression approaches. 

HϢ ∶ β (x) = ϢversusHϣ ∶ β (x) ≠ Ϣ β (x) = Ϣ

β (x)
HϢ ∶ B = ϢversusHϣ ∶ B ≠ Ϣ

Hypothesis  Test　 Testing  the  mixture  effect  of
exposures  in  Model  (2)  is  equivalent  to  testing
hypothesis . If ,
the  outcome  is  unrelated  to  the  mixture  of
exposures;  otherwise,  an  association  exists.  By
expanding  under  OLS  into  Model  (4),  the  test
hypothesis  is  converted  to .
This  transformation  shifts  the  hypothesis  by
determining  whether  a  continuous  function  equals
zero  when  testing  finite-dimensional  parameters.
Based on the testing principle of nested models, we
can construct likelihood ratio statistics (LRTs) as

λ (Q’) = supβ(x)=ϢL (β (x) ∣Q’)
supβ(x)L (β (x) ∣Q’) , (6)

−Ϥln (λ (Q’)) χϤ

K
and  follows  an  distribution  with

degrees of freedom .

α

B = (βϣ,⋯,βK)T
τϤ

HϢ ∶ τ
Ϥ = ϢversusHϣ ∶ τ

Ϥ ≠ Ϣ τϤ = Ϣ B

W = (Wϣ,⋯,Wn)T K = WWT

The  sequence  kernel  score  test,  also  known  as
the  global  test  (GT),  is  an  alternative  test  statistic
suitable for nested models. Within this framework, 
in  Model  (4)  is  treated  as  a  fixed  effect,  whereas

 is assumed to be an independent and
identically  distributed  random  effect,  following  a
normal distribution with a mean of 0 and variance .
The test hypothesis is subsequently transformed into

. If , each element in 
equals  0,  indicating  no  association  between
the  exposures  and  the  outcome.  Denote

, ,  and  the  variance-

component functional kernel score test statistic is

S (μ̂, σ̂Ϥ
e) = (Y − μ̂)TK (Y − μ̂)

σ̂Ϥ
e

, (7)

μ̂ σ̂Ϥ
e

μ̂ = α̂Ϣ + ZTα̂ Z = (Zϣ,⋯, Zn)T
α̂Ϣ α̂

S (μ̂, σ̂Ϥ
e) χϤ

δχϤv
ν δ

where  and  are the predicted mean and variance
under  the  null  hypothesis,  respectively.  That  is,

,  in  which  is  the  covariate
matrix,  and  are the estimations under the null
hypothesis;  then,  follows  a  distribution,
which  can  be  approximated  by  an  distribution
with a degree of freedom  and scale parameter 20-23.
Equation (6) is as follows:

E (S (μ, σϤ
e)) = tr (K) ,Var (S (μ, σϤ

e)) = Ϥtr (KϤ) .
μ σϤ

e μ̂ σ̂Ϥ
e

E (S (μ, σϤ
e)) = tr (K) ê = tr (PϢK)
PϢ = In − Z(ZTZ)−ϣZT In n × n

Var (S (μ, σϤ
e)) = Ϥtr (KϤ) Îττ = Iττ−

IϤτσϤ/IϤσϤσϤ Iττ = Ϥtr ((PϢK)Ϥ) IϤτσϤ = Ϥtr (PϢKPϢ)
IϤσϤσϤ = Ϥtr (PϤ

Ϣ) δν = ê ϤδϤν = Îττ

in  which  and  are  substituted  by  and ,
respectively.  According  to  Kwee  et  al.24,

 can  be  estimated  by ,
where  and  where  is  an 
identity  matrix.  Furthermore,  the  variance

 can  be  estimated  by 
, where , , and

.  Solving  equations  and 
yields  approximations  of  the  scale  parameter  and
the degree of freedom as follows:

δ =
Îττ
Ϥê , ν =

Îττ
ϤδϤ = ϤêϤ

Îττ
.

An R package implementing GFLM is available at
https://github.com/Peng247/Research  and  can  be
installed  using  the  R  command devtools::install_
github ("Peng247/Research"). 

Numerical Simulation

To  evaluate  the  performance  of  the  GFLM  in
mixture  exposure  studies,  an  extensive  simulation
study  was  conducted  using  the  NHANES  dataset  as
the data pool. This approach allows the maintenance
of realistic correlation structures and distributions of
exposure,  thereby  providing  a  more  practical
assessment  of  the  capabilities  of  the  method.  To
evaluate  GFLM's  performance  of  the  GFLM  relative
to  the  existing  methods,  we  included  WQS
regression in the unidirectional  simulation scenarios
for  comparison,  as  both  methods  can  be  directly
compared in terms of Type I error control, statistical
power, and effect estimation accuracy.

The  dataset  comprises  the  2011–2012,
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2013–2014,  and  2015–2016  dataset[10].  The  dataset
comprised  5,960  adult  participants  aged  20–60
years,  for  whom reliable  dietary  data  and  complete
information  on  relevant  covariates  were  available.
Individuals  who  had  experienced  weight  loss  or
other  health-related  diets  at  the  time  of  the  survey
were  excluded.  The  exposure  mixture  in  the  data
pool  consisted  of  37  nutrients  estimated  from
dietary  intake  data  collected  through  two  24-hour
dietary  recall  interviews.  These  nutrients  include  a
wide  range  of  dietary  components  such  as
macronutrients  (e.g.,  carbohydrates,  proteins,  and
various  types  of  fats),  vitamins  (e.g.,  vitamins  A,
complex vitamins,  vitamins C,  D,  E,  and K),  minerals
(e.g.,  calcium,  iron,  magnesium,  and  sodium),  and

other  dietary  factors  (e.g.,  fiber  and  caffeine).  The
outcome of interest in the original study was obesity,
defined as a  body mass index (BMI)  greater  than or
equal  to  30  kg/m2.  Approximately  36.2% of
individuals  in  the  dataset  were  classified  as  obese.
The  pairwise  Spearman  correlation  coefficients  of
nutrients  are  shown  in Figure  1,  with  correlation
coefficients ranging from −0.08 to 0.883. 

Type I Error Simulation　To evaluate the robustness
of  GFLM,  we  estimated  the  empirical  type  I  error
rate  using  a  simulation  approach.  Random  samples
of  1000,  1500,  and  2000  participants  were  drawn
from  the  original  dataset.  Within  each  sample,  the
order of the outcome variable BMI (both continuous
and  dichotomous)  was  randomly  permuted  to
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Figure 1. Spearman  correlation  matrix  among  nutrients. theo:  Theobromine;  caff:  Caffeine;  sele:
Selenium; pota:  Potassium; sodi:  Sodium; copp:  Copper;  zinc:  Zinc;  iron:  Iron;  magn:  Magnesium; phos:
Phosphorus; calc: Calcium; vk: Vitamin K; vd: Vitamin D (D2+D3); vc: Vitamin C; b12a: vitamin B12; vb12:
Vitamin  B12;  chl:  Cholesterol;  fdfe:  Folate;  zine:  Zinc;  vb6:  Vitamin  B6;  niac:  Niacin;  vb2:  Riboflavin
(Vitamin B2); vb1: Thiamin (Vitamin B1); lz: Lutein + zeaxanthin; lyco: Lycopene; cryp: Beta-cryptoxanthin;
bcar:  Beta-carotene;  acar:  Alpha-carotene;  vara:  Vitamin  A,  RAE;  atoc:  Vitamin  E  as  alpha-tocopherol;
chol: Total choline; pfat: Total polyunsaturated fatty acids; mfat: Total monounsaturated fatty acids; sfat:
Total saturated fatty acids; fiber: Dietary fiber; sugar: Total sugars; carb: Carbohydrate; prot: Protein.
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disrupt potential  associations with exposures.  GFLM
were  constructed  using  age  and  sex  as  covariates
and  37  nutrients  as  mixture  exposures.  The
significance  of  the  mixture  exposure  effect  was
tested using both the LRT and GT.

Pk p i α’

Given  the  random  permutation  of  BMI,  no
significant  association  between  mixture  exposure
and  outcomes  was  expected.  Therefore,  the
proportion  of  significant  results  across  simulations
provided an estimate of the type-I error rate. Denote

 as the  value of the th run of simulation and 
as  the  predetermined  significance  level;  then,  the
empirical type I error rate after 104 runs is

α̂ =
∑ϣϢϦ

k=ϣ I (Pk < α’)
ϣϢϦ .

 

Power  Simulation　 Under  the  alternative
hypothesis,  mixed  exposure  is  associated  with  the
outcome. The continuous outcome is generated by

E (yi) = αϢ + wϣZϣi + wϤZϤi + wϥ ∑m+

i=ϣ vipi − wϦ ∑m−

j=ϣ ujqj + ϵi,
(8)

Zϣi N (Ϣ, ϣ) ZϤi Bernoulli (Ϣ.ϧ)
m+

m−

pi qj vi uj

∑m+

i=ϣ vi = ∑m−

j=ϣ uj = ϣ wk ∈ [Ϣ, ϣ) ∑Ϧ
k=ϣ wk = ϣ

ϵi N(Ϣ, ϣ)
wϦ qj

pi qj

m+ m− wϥ wϦ

wϥ − wϦ

αϢ = log (Ϣ.Ϥϧ)
yi N (E (yi) , ϣ)
yi Bernoulli (exp {E (yi)} / (exp {E (yi)} + ϣ))

in  which  and  are
continuous  and  binary  covariates,  respectively; 
and  are  the  numbers  of  two  sets  of  causal
exposures  and  with weights  and  restricted
to ;  with  are
the  effect  sizes  of  the  corresponding  terms;  and

 are  random  errors.  In  Model  (7),  the
negative  sign  of  indicates  that  represents
exposure  with  negative  effects  on  the  outcome.
Given the mutual exclusivity of  and , this model
assumes  a  unidirectional  association  between  any
single  exposure  and  outcome.  The  proportion  of
null-effect  exposures  can be  controlled  by  adjusting
the magnitudes of  and . Therefore,  and 
represent  the  cumulative  positive  and  negative
exposure  effects,  respectively,  and  their  difference

 denoting  the  overall  mixture  exposure
effect.  By  setting ,  corresponding  to  a
20% incidence  rate,  the  continuous  outcome  is
generated by , and the binary outcome is
generated by .

wϦ = Ϣ
wϦ ≠ Ϣ

In the empirical power simulation, we focused on
two scenarios of interest: unidirectional ( ) and
bidirectional  ( )  exposure  effects.  The  effect
size  was  defined  as  the  proportion  of  the  total
outcome  variance  attributable  to  the  mixture
exposure effect; 1/3, 1/4, and 1/6 were selected for

the  simulation.  The  causal  proportion,  which
represents  the  ratio  of  causally  active  exposures  to
the  total  number  of  exposures  in  the  mixture,  was
used  to  model  the  different  patterns  of  exposure
effects.  This  proportion  ranges  from  1  (indicating
that all  exposures are associated with the outcome)
to  1/16  (intermediate  values  of  1/2,  1/4,  and  1/8).
Sample sizes of 1000, 1500, and 2000 were selected,
with  103 simulation  runs  for  each  empirical  power
calculation.  Following  the  same  notation  as  the
empirical type-I error rate, the empirical power is

ϣ − β̂ =
∑ϣϢϥ

k=ϣ I (Pk < α’)
ϣϢϥ .

 

Real  Data  Analysis　 To  demonstrate  the
practicability  of  the  GFLM,  we applied  two datasets
from the NHANES, each representing a different type
of mixture exposure scenario.

The  first  was  the  dataset  mentioned  in  the
numerical  simulation  section.  The  primary  objective
was  to  investigate  the  impact  of  37  nutrients  on
obesity, while controlling for age, sex, race, exercise
intensity,  and  smoking  status.  Using  the  GFLM,  we
tested the significance of the nutrient mixture effect,
estimated  the  magnitude  of  the  overall  mixture
effect, and quantified the individual contributions of
each nutrient.

The  second  dataset  was  derived  from  six
NHANES cycles spanning 2007-2018 whose objective
was to investigate the association between per- and
polyfluoroalkyl  substance  (PFAS)  exposure  and  gout
risk.  The  initial  sample  comprised  59,842
participants,  which  were  refined  to  7,101
participants  through  a  series  of  exclusion  criteria.
The  primary  outcome (gout  status)  was  determined
on  the  basis  of  self-reported  data  collected  using  a
structured  questionnaire.  The  exposure  assessment
focused  on  the  serum  concentrations  of  four  PFAS:
perfluorooctanoic  acid  (PFOA),  perfluorooctane
sulfonic  acid  (PFOS),  perfluorohexane  sulfonic  acid
(PFHxS),  and  perfluoronanoic  acid  (PFNA).  These
compounds were quantified using online solid-phase
extraction  coupled  with  high-performance  liquid
chromatography-turbo  ion  spray  tandem  mass
spectrometry.  A  comprehensive  set  of  covariates
was included to adjust for the potential confounding
effects.  These  included  demographic  variables  (age,
sex,  and  ethnicity),  socioeconomic  factors
(educational  attainment  and  family  poverty-income
ratio),  lifestyle  factors  (smoking  status,  alcohol
consumption, and physical activity level), and health-
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related  variables  (BMI).  We  aimed  to  test  the
individual  and  mixed  effects  of  PFAS  on  the  risk  of
gout  while  controlling  for  various  covariates.  The
detailed  sample  selection  process,  definition  of
outcomes,  exposures,  covariates,  and  statistical
description  of  covariates  by  gout  status  are
presented in Supplementary Information. 

RESULTS
 

Type I Error

β (x)
ΨB

K
K/m K

K

The  results  of  the  type-I  error  simulations  are
listed  in Table  1.  The  dimension  reduction  rate
indicates  the  intensity  of  the  dimensionality
reduction, with 1/2 indicating a reduction of half the
original  dimensions.  In  Model  (3),  the  EEF  is
expanded  by  finite-dimensional  basis  functions  and
coefficients ,  with  the  approximation  controlled
by  the  number  of  basis  functions .  The  dimension
reduction  rate  was  calculated  as .  Smaller 
values  represent  greater  dimensionality  reduction,
resulting  in  poorer  fitting  compared  to  larger 
values. Table  1 illustrates  the  robustness  of  the
GFLM  in  analyzing  continuous  and  binary  outcomes
under  various  sample  sizes,  significance  levels,
dimensionality  reduction  intensities,  and  ordering
mechanisms.

α
Both LRT and GT generally  maintain  type I  error

rates  close  to  the  nominal  significance level ,  with

α = Ϣ.Ϣϧ

GT  exhibiting  a  more  conservative  tendency.  Under
association-based  ordering,  both  tests  maintain
stable control with rates ranging from 0.049-0.059 at

. Correlation-based ordering showed slightly
more variability in the control group, particularly for
the  GT  with  a  smaller  sample  size.  The  GT  was
insensitive  to  the  degree  of  dimensionality
reduction,  whereas  the  LRT  tended  toward  an
inflated  type-I  error  as  the  number  of  mixture
exposures  increased.  For  LRT,  the  robustness  of
testing  continuous  outcomes  appeared  slightly
superior  to  that  of  binary  outcomes,  whereas  GT
demonstrated  comparable  control  across  both
outcome  types.  In  summary,  these  findings  suggest
that  the  GT  provides  a  more  robust  testing  method
for  GFLM,  maintaining  better  type-I  error  control
across  various  scenarios  of  dimensionality  outcome
types and ordering mechanisms. 

Power

The empirical power of the GFLM was evaluated
through  extensive  simulations,  and  the  results  are
shown  in Figures  2–5.  These  simulations  compared
the  performances  of  the  LRT  and  GT  under  various
scenarios,  including  unidirectional  and  bidirectional
exposure  effects  for  both  continuous  and  binary
outcomes.

In the unidirectional exposure scenarios (Figure 2–
Figure 3), the GFLM demonstrated greater power for
continuous outcomes than for binary outcomes. The

 

Table 1. Simulation results of type I error rates of LRT and GT of the GFLM models for continuous
and binary outcomes

Ordering Mechanism Sample size α  level
Dimension reduction rate = 1/4 Dimension reduction rate = 1/2

LRT
(CTN)

GT
(CTN)

LRT
(BNY)

GT
(BNY)

LRT
(CTN)

GT
(CTN)

LRT
(BNY)

GT
(BNY)

Association based ordering

1000
0.05 0.055 0.051 0.058 0.051 0.056 0.050 0.059 0.050

0.01 0.013 0.010 0.012 0.010 0.013 0.011 0.013 0.010

1500
0.05 0.052 0.050 0.059 0.051 0.055 0.051 0.058 0.050

0.01 0.012 0.010 0.013 0.012 0.013 0.011 0.013 0.010

2000
0.05 0.054 0.051 0.055 0.051 0.056 0.049 0.057 0.050

0.01 0.012 0.011 0.011 0.010 0.013 0.009 0.013 0.010

Correlation based ordering

1000
0.05 0.052 0.044 0.049 0.051 0.042 0.041 0.055 0.031

0.01 0.012 0.011 0.014 0.011 0.010 0.008 0.008 0.002

1500
0.05 0.053 0.055 0.052 0.049 0.048 0.054 0.053 0.050

0.01 0.008 0.011 0.011 0.009 0.011 0.012 0.011 0.010

2000
0.05 0.053 0.042 0.053 0.051 0.053 0.055 0.055 0.047

0.01 0.013 0.008 0.011 0.012 0.008 0.009 0.008 0.008

　　Note. LRT, likelihood ratio test; GT, global test; CTN, continuous; BNY, binary

GFLM for mixture exposures 7



GT  exhibited  superior  overall  performance  relative
to  the  LRT,  particularly  in  terms  of  robustness  to
effect-size variations.  This  suggests  that  the GT may
be  preferable  in  situations  where  the  magnitude  of
the  exposure  effects  is  uncertain  under  the
unidirectional  assumption  of  mixture  exposure.  A
comparison  with  WQS  regression  reveals  that  the
GFLM provides comparable or superior power across
different  scenarios,  particularly  for  binary outcomes
and  smaller  effect  sizes.  While  both  methods
maintain  good power  for  continuous  outcomes,  the
GFLM  demonstrates  a  more  stable  performance
across  varying  causal  proportions.  Bidirectional
exposure  simulations  (Figure  4–Figure  5)  revealed
that the LRT outperformed the GT. This performance
difference  was  particularly  pronounced  for  binary
outcomes,  particularly  when  the  association-based
ordering of exposures was employed. These findings
highlight the importance of selecting an appropriate
test  statistic  based  on  the  anticipated  direction  of
the exposure effects and the nature of the outcome
variable.

In  contrast  to  the  intuitive  expectation  that
opposing effects in a mixture would lead to reduced
detectability, the simulations demonstrated that the
absolute sum of the effect sizes is a key determinant
of  statistical  power. Figure  5 illustrates  that
regardless  of  the  proportion  of  positive  to  negative
effects,  larger  absolute  effect  sizes  consistently
yielded  greater  power.  This  result  underscores  the
ability  of  the  GFLM  to  detect  significant  mixture
effects,  even in  the  presence  of  opposing  individual
exposure effects. 

Effect Size

Figure  6 and 7 present  the  results  of  effect  size
estimation for  various simulation scenarios.  The red
dashed  line  represents  the  true  effect  size,  and  the
solid lines represent the 95% confidence intervals for
each  simulation  setting.  Across  all  the  simulated
scenarios, the 95% CIs consistently encompassed the
true  effect  size,  with  point  estimates  generally
clustered  around  the  true  value.  As  expected,
increasing the sample size reduced the width of the
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Figure 2. Simulation of the unidirectional exposure effect for continuous outcomes under various sample
sizes, total effect sizes, causal exposure proportions, and testing method combinations. WQS, weighted
quantile sum regression; LRT, likelihood ratio test; GT, global test.
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CIs. Figure  6 shows  that  the  GFLM  provides  more
reliable  estimates  than  the  WQS,  which  tends  to
overestimate  mixture  effects,  particularly  for  binary
outcomes. GFLM’s confidence intervals of the GFLM
consistently  contain  the  true  effect  size  across
different  scenarios,  demonstrating  its  robust
performance  in  effect  estimation.  Notably, Figure  6
shows  that  smaller  true  mixture  effects  correspond
to  narrower CIs.  This  inverse  relationship  suggests
that the GFLM performs particularly well in detecting
and estimating subtle mixture effects.

In  the  simulation  studies,  we  observed  that  for
continuous  outcomes,  while  the  95% CIs  of  the
mixture  effect  size  estimates  consistently
encompassed  the  true  values,  the  point  estimates
deviated  from  them.  Further  investigation  revealed
that a two-step approach could significantly increase
the  accuracy  of  the  point  estimates.  This  approach
involves  normalizing  the  continuous  outcome,
converting it into a binary variable, and then refitting
the  model.  The  final  estimate  was  obtained  by
averaging  the  total  effect  estimates  from  both
original  and  transformed  models. Figure  6 and 7

present  the  results  of  the  mixed-averaging  method.
For  binary  outcomes,  the  point  estimates
demonstrated  remarkable  accuracy  across  various
simulation  scenarios,  closely  aligning  with  the  true
values. However, it is worth noting that the 95% CIs
for binary outcomes were generally wider than those
observed for continuous outcomes. 

Data Analysis
 

Nutrients-BMI  Analysis　 The  GFLM  model  was
applied  to  reanalyze  data  from  the  NHANES
2011–2016  cycles  to  examine  and  estimate  the
effects  of  37  nutrients  on  BMI,  while  also
demonstrating  the  relative  contribution  of  each
nutrient.  Analysis  of  variance  inflation  factors  (VIF)
revealed  correlation  among  the  nutrients,  with  9
nutrients  showing  high  correlation  (VIF  >  5)  and  14
showing moderate correlation (2  <  VIF ≤ 5). Table  2
presents the estimated mixture effects, 95% CIs, and
test  results  for  the  different  exposure  ordering
mechanisms.  After  controlling  for  covariates,  the
nutrient  mixture  had  a  significant  effect  on  BMI.
Under  association-based  ordering,  a  one-quartile
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Figure 3. Power  simulation  of  the  unidirectional  exposure  effect  for  binary  outcomes  under  various
sample  sizes,  total  effect  size  magnitudes,  causal  exposure  proportions,  and  testing  method
combinations. WQS, weighted quantile sum regression; LRT, likelihood ratio test; GT, global test.
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increase across all nutrients corresponded to a 0.246
unit  decrease  in  BMI.  Under  correlation-based
ordering,  this  effect  was  estimated  as  a  0.323-unit
decrease.

Figure 8 illustrates the effect function calculated
using  model  (3)  for  both  ordering  mechanisms.
While  Renzeitt’s[10] work  identified  magnesium  and
sodium  as  the  nutrients  with  the  largest  negative
and  positive  contributions,  respectively,  the  GFLM
analysis  suggests  a  more  nuanced  interpretation.
Although  these  nutrients  have  both  negative  and
positive effects, they are not significant contributors.
Instead,  their  effects  appear  to  be  a  part  of  a
complex  interplay  with  other  nutrients. Figure  8
shows  that  fiber  and  fat  consistently  emerged  as
nutrients  with  the  greatest  negative  and  positive
effects,  respectively,  regardless  of  the  ordering
method.  This  finding  is  consistent  with  those  of
numerous previous studies on the effects of diet on
BMI[25-27].

Notably,  for  certain  nutrients,  the  estimated
direction  of  the  effect  differed  between  the  two
ordering  mechanisms.  This  discrepancy  is  related to
the  GFLM  estimation  methodology  and  warrants

further discussion in the subsequent sections of this
paper. 

PFAS-gout  Analysis　 The  GFLM  model  was  applied
to analyze data from the NHANES 2007–2018 cycles
to  investigate  the  association  between  the  four
PFASs  and  gout  risk  while  controlling  for  various
covariates.

Analysis  of  the  dataset  revealed  strong  linear
correlations between the four PFAS, as illustrated by
the Pearson correlation coefficient matrix in Table 3.
A multistep analytical approach was used to examine
the  relationship  between  PFAS  exposure  and  gout
risk. Initially, logistic regression models were used to
assess  the  association  between  individual  PFAS  and
gout after adjusting for all  covariates. Subsequently,
a  multivariate  logistic  model  incorporating  all  the
four  PFAS  was  constructed  to  explore  their
combined  effects.  The  results  of  these  analyses  are
presented  in  the “individual  exposure  analysis”
section  in Table  4.  Both  the  univariate  and
multivariate  analyses  showed  no  significant
association,  with  only  PFOA  exhibiting  marginal
significance  in  the  multivariate  model.  However,
recognizing  the  limitations  of  logistic  regression  in
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Figure 4. Power  simulation  of  the  bidirectional  exposure  effect  for  continuous  (first  row)  and  binary
(second row) outcomes under various causal  proportion combinations when the sample size is  fixed to
1500 and when the positive effect size is assumed to be equal to the negative effect size. WQS, weighted
quantile sum regression; LRT, likelihood ratio test; GT, global test.
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capturing  the  mixture  effects,  further  analysis  was
conducted using both WQS and the proposed GFLM.
The  results  are  presented  in  the  lower  half  of
Table 4.

WQS  regression  analysis  suggested  a  significant
association between the joint effect of the four PFAS
and  gout  risk  (OR,  1.40;  95% CI:  1.31–1.50).  In
contrast,  the  GFLM  showed  no  significant
association.  To  interpret  this  discrepancy  in  the
results, we noticed high positive correlations among
the  PFAS,  as  shown  in Table  3,  which  suggests  that
multicollinearity  may  significantly  influence
parameter  estimation  in  the  WQS  framework.
Moreover,  the  discrepancy  can  be  understood
through simulation studies,  which demonstrate that
WQS  tends  to  overestimate  the  mixture  effects  for
binary  outcomes.  Given  this  tendency  and  the  fact
that  GFLM’s  demonstrated  robust  performance  in
the  simulations,  the  GFLM  results  suggesting  no
significant  PFAS  mixture  effect  on  gout  risk  may  be
more reliable. 

DISCUSSION

In  this  study,  we  propose  a  novel  model
framework  for  analyzing  mixture  exposure  data.
Drawing inspiration from the FDA, we introduce the
concept of fitting the exposure effects as continuous
functions.  This  approach  allows  for  efficient  and
accurate  effect  estimation,  while  fully  capturing  the
correlations  between  exposures.  Statistical
simulations  demonstrated  that  the  proposed  GFLM
model  exhibited  a  robust  performance  and
preferable  statistical  power  across  various  settings.
The effect size estimates were reliable, with 95% CIs
consistently encompassing the true values across all
simulation  scenarios.  We  applied  the  model  to
reanalyze  the  effects  of  37  nutrients  on  BMI  using
the  NHANES  database,  which  yielded  results  that
were  more  interpretable  than  those  of  the  original
study.  Additionally,  the  application  of  the  GFLM  to
the  PFAS-gout  dataset  further  demonstrated  its
utility  in  handling  complex,  correlated  exposures.

 

Negat ive causal proport ion Negat ive causal proport ion Negat ive causal proport ion

Negat ive causal proport ion Negat ive causal proport ion Negat ive causal proport ion

Posit ive causal proport ion: 1/4 Posit ive causal proport ion: 1/8 Posit ive causal proport ion: 1/16

Posit ive causal proport ion: 1/4 Posit ive causal proport ion: 1/8 Posit ive causal proport ion: 1/16

1/4 1/8 1/16

0

0.25

0.50

0.75

1.00

P
o

w
e

r

1/4 1/8 1/16

0

0.25

0.50

0.75

1.00

P
o

w
e

r

1/4 1/8 1/16

0

0.25

0.50

0.75

1.00

P
o

w
e

r

1/4 1/8 1/16

0

0.25

0.50

0.75

1.00

P
o

w
e

r

1/4 1/8 1/16

0

0.25

0.50

0.75

1.00

P
o

w
e

r

1/4 1/8 1/16

0

0.25

0.50

0.75

1.00

P
o

w
e

r

Test

Test

LRT-CTN (Correlat ion-based Ordering) GT-CTN (Correlat ion-based Ordering)

LRT-CTN (Associat ion-based Ordering) GT-CTN (Associat ion-based Ordering)

LRT-BNY (Correlat ion-based Ordering) GT-BNY (Correlat ion-based Order

LRT-BNY (Associat ion-based Ordering) GT-BNY (Associat ion-based Order

Figure 5. Power simulation of the bidirectional exposure effect for continuous (the first row) and binary
(the second row) outcomes under various causal proportion combinations when the sample size is fixed
to  1500  and  assuming  that  the  positive  effect  size  is  twice  the  negative  effect  size.  WQS,  weighted
quantile sum regression; LRT, likelihood ratio test; GT, global test.

GFLM for mixture exposures 11



Unlike  the  WQS  regression,  which  suggested  a
significant  association  between  the  PFAS  mixture
and  gout  risk,  the  GFLM  showed  no  significant
association.  This  discrepancy  highlights  GFLM’s
robustness of the GFLM to multicollinearity, which is
a  common  challenge  in  environmental  mixture
analysis.

Given  the  innovative  integration  of  FDA
techniques  into  mixture  exposure  analyses,  it  is
essential  to  highlight  the  key  technical
considerations  for  practical  applications.  Typically,
functional  regression  is  applied  when  variables  are
functions  of  time  or  other  continua;  however,
exposure  generally  lacks  inherent  order.  To  address
this,  our  analytical  framework  first  orders  the
exposures  according  to  specific  rules  and  then
approximates  the  position  as  a  continuous  quantity
for  function  fitting.  The  scientific  basis  for  this
approach  stems  from  observations  in  time-series
data, where adjacent points often exhibit the highest
correlation,  leading  to  our  proposed  correlation-
based  ordering  mechanism,  which  arranges
exposures  based  on  the  hierarchical  clustering  of

K = m/Ϧ
m

their  associations.  Although  the  selection  of  basis
functions  is  an  important  consideration  in  the  FDA,
our  simulation  results  demonstrate  that  the  GFLM
maintains  a  robust  performance  across  different
choices  of  basis  function  numbers.  We  recommend
starting  with  basis  functions  for  general
applications,  where  is  the  number  of  exposures,
with  adjustments  based  on  cross-validation  results.
Importantly,  the  validity  of  GFLM’s  conclusions  of
the  GFLM  remained  stable  across  different
dimensionality reduction rates.

The  implications  of  the  two  proposed  ordering
methods  are  notable.  Although  correlation-based
ordering  satisfies  the  conditions  for  functional
regression,  studies  have  shown  that  two  positively
associated  exposures  or  biomarkers  can  have
opposing  effects  on  the  outcome28,29.  This
phenomenon  explains  why  some  exposures  in  our
data  analysis  exhibited  opposite  effects  under
different  ordering  mechanisms.  Therefore,  we  also
propose  an  ordering  based  on  the  strength  of  the
association  with  the  outcomes.  In  practical
applications,  researchers  should  carefully  consider
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the  potential  mechanisms  of  the  exposure  effects
and select the most appropriate ordering method.

The  choice  between  LRT  and  GT  should  be
guided  by  study  characteristics  and  research
priorities. While the LRT shows slightly elevated Type
I  error  rates  but  higher  power  when the effects  are
concentrated  in  fewer  exposures,  the  GT  maintains
strict  control  and  performs  better  when  the  effects
are  distributed  across  multiple  exposures.  GT  is
recommended  when  strict  type-I  error  control  is
required,  whereas  LRT  may  be  preferable  for
exploratory  analyses  or  when  higher  sensitivity  is
acceptable.

Our  study  findings  provide  guidance  for
interpreting  effect  size  estimates.  In  real-world
scenarios,  mixture  exposure  often  includes  near-
zero-effect  exposure.  However,  the  functional

regression  fitting  process  may  assign  small  pseudo-
effects to these exposures to maintain the functional
smoothness.  The  strength  of  the  GFLM  lies  in
identifying  consistent  patterns  and  peak  effects
across  different  ordering  mechanisms  rather  than
precisely  estimating  individual  effects.  Traditional
regression  approaches  are  appropriate  for
investigating  specific  exposure  effects.  When  using
the  GFLM,  we  recommend  focusing  on  effects  that
remain  consistent  across  different  ordering
mechanisms,  as  these  provide  stronger  evidence  of
true  associations.  Visualizations  such  as  those  in
Figure  8 can  be  used  to  observe  the  relative
contributions of each exposure within the mixture.

The  proposed  GFLM  method  has  several
advantages.  It  provides  results  that  align  more
closely  with  the  researchers’ expectations  from
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Table 2. Analysis results of the effects of 37 nutrient mixtures on BMI (NHANES 2011--2016)

Ordering Mechanism Estimate 95% CI PLRT PGT

Association-based −0.246 [−0.50, −0.012] 6.6×10−5 5.3×10−3

Correlation-based −0.323 [−0.62, −0.0079] 3.3×10−4 0.012

　　Note. CI, confidence interval; LRT, likelihood ratio test; GT, global test.
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statistical  analyses.  By  leveraging  the  nested  model
framework and functional regression techniques, we
calculated  exact p values,  mixture  effect  estimates,
and CIs. Unlike the complex results of methods such
as BKMR, these outputs are both familiar and easily
interpretable.  Second,  the  GFLM  model  exhibited
superior  computational  efficiency.  It  is  significantly

faster  than  WQS,  with  computation  times
approximately  1/50 of  the latter  for  sample sizes  of
1000  under  the  simulation  settings  described  in
Section  2.2.  This  advantage  became  even  more
pronounced  with  larger  sample  sizes.  A  detailed
comparison  of  the  running  times  is  provided  in  the
Supplementary file.
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Table 3. Pearson correlation between four PFAS levels after log2 transformation

PFNA PFOA PFOS

PFOA 0.72

PFOS 0.73 0.69

PFHS 0.46 0.62 0.67

 

Table 4. Mixture effect estimates of logistic regression, WQS, and GFLM

Analysis Model Mixture effect (95% CI)

Individual exposure analysis

Logistic Regression PFOA PFOS PFHxS PFNA

Univariate 1.03(0.91, 1.16) 0.92(0.84, 1.02) 0.92(0.83, 1.02) 0.98(0.87, 1.09)

Multivariate 1.24(1.02, 1.49) 0.88(0.75, 1.04) 0.89(0.77, 1.03) 1.01(0.83, 1.21)

Mixture exposure analysis

WQS 1.40 (1.31, 1.50)

GFLM (correlation-based ordering) 1.05 (0.79, 1.55)

GFLM (association-based ordering) 1.07 (0.77, 1.62)
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However,  GFLM  has  some  limitations.  First,  its
theoretical  foundation  requires  a  higher  level  of
statistical  expertise  from  users,  including
programming  proficiency.  Second,  the  functional
regression approach in Model (3) lacks standardized
guidelines  for  selecting  the  basis  function  system,
number,  and  order,  thus  requiring  researchers  to
explore  these  aspects  independently.  In  our
simulations  and data  analysis,  we used a  quarter  of
the  number  of  exposures  and  employed  B-spline
fitting  for  cubic  functions,  although  Fourier  basis
functions might be more appropriate in some cases,
depending on the specific research needs. Finally, for
exposures with weak individual  and mixture effects,
their estimated contributions can be sensitive to the
choice  of  ordering  mechanism,  necessitating  careful
interpretation  based  on  the  researchers’
understanding of the problem.

In conclusion, the GFLM model presented in this
study  offers  a  theoretically  sound  and  highly
applicable  method  for  analyzing  mixture  exposure.
Statistical  simulations  and  case  analyses
demonstrated  their  robustness,  efficiency,  and
versatility.  We  have  included  R  codes  for  the
simulation  and  data  analysis  in  the  Appendix  with
the  hope  that  this  method  will  find  widespread
application  in  mixture  exposure  research,  thereby
advancing the field of public health. 
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