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Abstract

Objective　 To identify the key features of facial and tongue images associated with anemia in female
populations, establish anemia risk-screening models, and evaluate their performance.

Methods　  A  total  of  533  female  participants  (anemic  and  healthy)  were  recruited  from  Shuguang
Hospital.  Facial  and  tongue  images  were  collected  using  the  TFDA-1  tongue  and  face  diagnosis
instrument.  Color  and texture features from various parts  of  facial  and tongue images were extracted
using  Face  Diagnosis  Analysis  System  (FDAS)  and  Tongue  Diagnosis  Analysis  System  version  2.0  (TDAS
v2.0).  Least  Absolute  Shrinkage  and  Selection  Operator  (LASSO)  regression  was  used  for  feature
selection.  Ten  machine  learning  models  and  one  deep  learning  model  (ResNet50V2  +  Conv1D)  were
developed and evaluated.

Results　 Anemic women showed lower a-values, higher L- and b-values across all age groups. Texture
features  analysis  showed  that  women  aged  30–39  with  anemia  had  higher  angular  second  moment
(ASM)and  lower  entropy  (ENT)  values  in  facial  images,  while  those  aged  40–49  had  lower  contrast
(CON), ENT, and MEAN values in tongue images but higher ASM. Anemic women exhibited age-related
trends similar to healthy women, with decreasing L-values and increasing a-, b-, and ASM-values. LASSO
identified  19  key  features  from  62.  Among  classifiers,  the  Artificial  Neural  Network  (ANN)  model
achieved the best performance [area under the curve (AUC):  0.849, accuracy: 0.781].  The ResNet50V2
model achieved comparable results [AUC: 0.846, accuracy: 0.818].

Conclusion　 Differences in facial and tongue images suggest that color and texture features can serve
as potential TCM phenotype and auxiliary diagnostic indicators for female anemia.
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INTRODUCTION

T he  World  Health  Organization  defines
anemia  as  a  condition  of  excessively  low
hemoglobin  concentrations,  with

thresholds  of  <  130 g/L  for  men,  <  120 g/L  for  non-
pregnant  women,  and  <  110  g/L  for  pregnant
women.  Hemoglobin  levels  can  physiologically
decrease  by  approximately  5  g/L  during  the  second
trimester  of  pregnancy[1].  Additionally,  normal
hemoglobin  levels  are  influenced by  factors  such  as
age,  race,  and  altitude[2].  Anemia  is  a  common
manifestation  of  hematological  disorders  and  a
complication  of  various  chronic  conditions  such  as
chronic kidney disease, congestive heart failure, and
malignant tumors[3]. The results of the Global Burden
of  Disease  Study  in  2021  indicated  a  global
prevalence  as  high  as  24% for  anemia,  affecting
approximately 1.29 billion people worldwide[4]. Thus,
anemia  is  a  global  health  concern  and  a  leading
cause of morbidity in women.

Approximately  29% of  non-pregnant  women[5]

and 36.8% of pregnant women[6] suffer from anemia
globally,  with  both  the  prevalence  and  average
severity  of  anemia  being  higher  in  women[7].Early
active  intervention can prevent  the development  of
anemia  and  is  the  preferred  method  for  controlling
the  prevalence  of  anemia[8].  Iron  deficiency  is  the
most  common  cause  of  anemia  in  women[9].  Iron
deficiency  anemia  (IDA)  is  associated  with  a  decline
in  cognitive  ability[10],  with  symptoms  including
weakness, fatigue, anxiety, low mood or depression,
decreased  exercise  tolerance,  difficulty
concentrating,  and  reduced  work  efficiency.  These
symptoms  may  be  related  to  reduced  oxygen
transport  due  to  anemia  and  decreased  cellular
oxidative  capacity  due  to  iron  deficiency[11].  Severe
IDA  is  associated  with  an  increased  risk  of  preterm
birth,  low  birth  weight  infants[12],  and  increased
maternal  mortality[13,14] and  may  also  lead  to
infections[15] and  heart  failure[16].  Although  these
studies primarily focused on iron-deficiency anemia,
the  harm  exceeded  that  of  non-anemia,  supporting
the  primary  role  of  anemia  as  a  risk  factor  for
adverse outcomes. Increasing evidence suggests that
preoperative anemia is associated with a higher risk
of  complications,  longer  hospital  stays,  blood
transfusion  requirements,  and  mortality[17–20].
Women  have  a  higher  probability  of  perioperative
blood  transfusion[21].  Therefore,  early  identification
and  timely  intervention  for  patients  with  mild
anemia  to  prevent  progression  to  moderate  or
severe  anemia  are  important  for  improving  the

quality of life and public health of women.
Complete  blood  cell  examination  is  the  gold

standard for diagnosing anemia. Accurate acquisition
of  hemoglobin  level  information  is  crucial  in
determining  anemia  in  women  and  reducing  the
prevalence  of  severe  anemia[22].  Obtaining  blood
samples  requires  invasive  puncture  procedures  that
require  professional  medical  personnel  and
specialized  detection  equipment[23].  Research
indicates  that  non-invasive  hemoglobin
measurement  through  the  skin[24],  fingertips[25],  nail
beds[26],  or  mucous  membranes[27,28] can  achieve  a
prediction  accuracy  rate  as  high  as  96%.  This  not
only  reflects  the  clinical  value  of  non-invasive
anemia screening prediction models but also plays a
positive  role  in  reducing  the  discomfort  associated
with  invasive  blood  collection  and  eliminating  the
risk  of  infection.  Studies  have shown that  anemia is
associated  with  pallor  in  certain  parts  of  the  body,
such as the face, lips, and conjunctiva[29]. As a part of
the  skin,  the  largest  organ  of  the  human  body,  the
face  can  reflect  physiological  and  pathological
information  through  changes  in  its  color  and
texture[24,30]. The surface of the tongue is covered by
mucosa,  and  the  color  characteristics  of  this
anatomical  site  mainly  originate  from  blood,  with
minimal  interference  from  confounding
chromophores such as melanin. These two collection
sites  complemented  each  other.  The  easily
accessible sampling site and simple sampling method
met  the  need  for  rapid  and  large-scale  anemia
screening  in  high-risk  populations  (such  as  children
and pregnant women) and the general public on the
one  hand.  However,  the  advantages  of  non-
invasiveness,  low  cost,  and  high  accuracy  have  a
positive  impact  on  reducing  the  prevalence  of
anemia  in  remote  areas  where  resources  are
relatively  scarce.  Therefore,  changes  in  facial  and
tongue features may be potential clinical markers for
early screening of anemia risk.

As  non-invasive  and  convenient  health
assessment  methods,  the  importance  of  inspection
and tongue diagnosis is increasingly prominent. They
mainly  provide  valuable  diagnostic  clues  to  doctors
by observing color and texture changes in the facial
skin,  tongue  body,  and  tongue  coating.  With  the
rapid  development  of  computer  image  processing
technology,  we  are  no  longer  limited  to  visual
observation  but  can  quantitatively  describe  and
analyze  facial  and tongue features.  Previous  studies
have  shown  that  changes  in  mucosal  color  are
closely  related  to  the  metabolism  of  hematological
parameters[31,32], which provides a scientific basis for
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tongue inspection and diagnosis.  In  the  wave of  big
data  and  artificial  intelligence,  machine  learning
technology  has  become  the  key  to  developing
disease  risk  warning  models  based  on  tongue  data.
As  an  important  branch  of  machine  learning,  deep
learning can automatically extract low-level features
from  images  and  convert  them  into  high-level
features  by  constructing  a  multilayer  perceptron
structure, thereby achieving precise capture of facial
and  tongue  image  features[33,34].  In  this  study,  we
fully  leveraged  the  strengths  of  machine  and  deep
learning to  construct  an early  anemia risk-screening
model  for  women,  focusing  on  facial  and  tongue
images.  This  model  not  only  inherits  the  traditional
advantages  of  inspection  and  tongue  diagnosis  but
also  incorporates  the  power  of  modern  technology,
making  health  assessments  more  precise  and
efficient.  This study provides a new perspective and
methodology for managing women's health.

This  study  aimed to  identify  the  crucial  features
of  facial  and tongue images associated with anemia
in  a  female  population  and  to  establish  a  screening
model  for  anemia  risk.  The  analysis  was  conducted
from  three  perspectives:  (1)  Utilizing  the  TDAS  v2.0
and  FDAS  tools,  we  extracted  color  and  texture
characteristics  from  facial  and  tongue  images  to
analyze  the  differences  in  these  features  among
female  individuals  with  anemia,  as  well  as  the
patterns  of  age-related  changes.  (2)  By  employing
Least  Absolute  Shrinkage  and  Selection  Operator
(LASSO)  regression  for  feature  selection,  we  aimed
to filter out facial and tongue parameters that were
significantly  associated  with  anemia.  (3)
Subsequently,  anemia  risk-screening  models  were
established for female participants using both classic
machine  learning  classification  algorithms  and  deep
learning algorithms for feature fusion modeling. The
performance  of  the  models  derived  from  both
methods was then evaluated. 

METHODS
 

Data Source

Data were collected from January 10,  2019, to
December  18,  2019,  at  the  Physical  Examination
Center  of  Shu  Guang  Hospital  affiliated  to
Shanghai  University  of  Traditional  Chinese
Medicine.  All  participants  provided  written
informed  consent.  The  inclusion  criteria  were  as
follows: (1) female sex and (2) age between 20 and
49 years. The exclusion criteria were as follows: (1)
facial  makeup;  (2)  presence  of  liver  failure,  renal
failure,  severe  infection,  severe  hematological
disorders,  or  other  conditions  that  could  cause
blood  profile  changes;  (3)  skin  diseases  affecting
facial color, such as vitiligo, urticaria, and acne; (4)
acute  onset  of  acute  or  chronic  diseases  within  1
month  prior  to  image  acquisition;  (5)  history  of
blood donation or blood transfusion prior to image
and  blood  acquisition;  and  (6)  pregnancy  or
lactation. According to the data collection process,
after  the  participants  provided  blood  samples,  a
specially  trained  researcher  captured  images  of
their  faces  and  tongues  using  the  TFDA-1  tongue
and face diagnosis instrument[35] developed by the
Smart  Diagnosis  Technology  Research  Team  at
Shanghai  University  of  Traditional  Chinese
Medicine.  Two  sets  of  facial  and  tongue  images
were  captured  for  each  participant,  and  quality
control  measures  were  implemented  to  ensure
image  quality.  Demographic  information  of  the
participants  included  their  sex,  age,  BMI,  and
blood pressure (Table 1).

This  study  was  reviewed  and  approved  by  the
Ethics  Committee  of  Shuguang  Hospital  affiliated  to
Shanghai  University  of  Traditional  Chinese Medicine
(approval  number:  2018-626-55-01).  The  workflow
diagram is illustrated in Figure 1. 

 

Table 1. Basic Information of Subjects

Anemia (n = 152) Healthy Controls (n = 381) Total χ2/t P

age[n(%),year] 0.987 0.610

20−29 31 (20.4) 90 (23.6) 121 (22.7) 　

30−39 64 (42.1) 163 (42.8) 227 (42.6) 　

40−49 57 (37.5) 128 (33.6) 185 (34.7) 　

BMI[x±s, Kg/m2] 22.289±3.061 22.105±3.117 0.651 0.515

SBP[x±s, mmHg] 114.868±12.151 112.976±12.603 1.581 0.115

DBP[x±s, mmHg] 71.263±9.244 71.457±8.358 −0.234 0.815
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Label Assignment

Data  were  annotated  based  on  the  participants’
laboratory  results,  which  were  judged  according  to
hemoglobin  concentration.  Anemia  was  diagnosed
based on the “Multidisciplinary Expert Consensus on
the  Diagnosis,  Treatment,  and  Prevention  of  Iron
Deficiency and Iron Deficiency Anemia in 2022.” The
threshold  for  anemia  in  Chinese  women  is
hemoglobin  level  <  110  g/L[36].  In  this  study,
researchers  collected  facial  images,  tongue  images,
and  blood  samples  from  the  participants  on  the
same day. If the participants’ hemoglobin level was <
110  g/L,  they  were  considered  to  belong  to  the
anemia  group  (label  =  1).  If  the  participants’
hemoglobin  level  was  greater  than  or  equal  to  110
g/L, they are considered to be in the healthy control
group (label = 0). 

Extraction of Color and Texture Features

In  this  study,  the  color  and  texture  features  of
the tongue body (TB)  and tongue coating  (TC)  were
extracted  using  Tongue  Diagnosis  Analysis  System
version  2.0  (TDAS  v2.0),  a  tongue  diagnosis  analysis
system  developed  by  the  Intelligent  Diagnosis
Technology Research Team at Shanghai University of
Traditional  Chinese  Medicine  (Figure  2).  The  color
features  were  expressed  using  the  Lab  color  space,

where the L-value represents lightness, with a higher
L-value  indicating  a  brighter  color.  The  a-value
corresponds  to  the  red-green axis,  where  a  positive
value indicates  redness  (higher  values  mean deeper
red) and a negative value indicates greenness (lower
values mean deeper green).  The b-value pertains to
the yellow-blue axis, where a positive value signifies
yellowness  (higher  values  indicate  deeper  yellow)
and a negative value denotes blueness (lower values
mean deeper blue). The color features included TB-L,
TB-a,  TB-b,  TC-L,  TC-a,  and  TC-b.  Texture  features
included  contrast  (CON),  angular  second  moment
(ASM),  entropy  (ENT),  and  mean  value  (MEAN).
Among  them,  the  larger  the  values  of  texture
features  CON,  ENT,  and  MEAN,  and  the  smaller  the
ASM  value,  the  rougher  the  tongue  texture[37].  In
addition, the tongue coating indices for all parts and
for  each  part  were  calculated  based  on  the  pixel
values.  Facial  color  and  texture  features  were
extracted  using  Face  Diagnosis  Analysis  System
(FDAS) (Figure 2). The extraction range for the facial
image  indicators  encompassed  the  entire  face  and
nine specific facial areas. Based on the gray-level co-
occurrence matrix (GLCM), certain feature quantities
were  extracted  to  describe  the  texture  feature
information  of  the  facial  image[38,39].  The  feature
quantities  included  ASM,  CON,  ENT,  and  inverse
different moment (IDM). The facial color and tongue
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variables  used  in  the  analysis  are  shown  in
Supplementary  Tables  S1-S2.  Statistical  analysis  was
performed  on  the  facial  and  tongue  image  features
of the two groups. 

Statistical Analysis

Normally  distributed  quantitative  data  were
presented as x±s to represent central and dispersion
tendencies. Skew-distributed quantitative data were
expressed as M(P25, P75) to represent the central and
dispersion  tendencies.  If  the  comparison  variables
between  the  groups  satisfied  normality  and
homogeneity  of  variance,  an independent sample t-
test and one-way ANOVA were used. If the variables
did not meet the criteria, the Mann–Whitney U test
was  used  for  comparisons  between  two  groups,
whereas  the  Kruskal–Wallis H test  was  used  for
comparisons  among  three  groups,  followed  by
pairwise  comparisons.  Categorical  variables  were
presented as n (%), and comparisons among multiple
categorical data classes were conducted using the χ²
test.  All  statistical  analyses  were  performed  using
SPSS  version  27.0  (IBM  Corp.,  Armonk,  NY,  USA),
with statistical significance set at P < 0.05. 

Feature Selection

Not  all  of  the  aforementioned  62  facial  and
tongue  imaging  features  are  useful  for  predicting
anemia  because  they  contain  redundant  features.
The selection of too many features increases the risk
of  overfitting.  Therefore,  it  is  crucial  to  reduce  the
dimensionality  of  facial  and  tongue  image  features
and select  indicators  that  are highly  correlated with
anemia.  To  achieve  this,  the  LASSO  regression
method  was  employed  for  variable  selection.  This

method  introduces  an  L1  norm  as  a  penalty
constraint in the calculation to minimize the Residual
Sum of Squares (RSS). When the penalty coefficient λ
is  sufficiently  large,  it  can  compress  the  coefficients
to  zero,  effectively  selecting  the  most  relevant
variables  to  the  outcome  and  reducing  the
dimensionality of independent variables. This helped
avoid the risks of collinearity and overfitting[40]. 

Classification by the Machine Learning Approach

We  employed  ten  machine  learning  methods:
Logistic Regression (LG), Decision Tree (DT), Support
Vector  Machine  (SVM),  Random  Forest  (RF),  K-
nearest  neighbors  (KNN),  Artificial  Neural  Network
(ANN), naïve Bayes (NB), extreme Gradient Boosting
(XGBoost),  Light  Gradient  Boosting  Machine
(LightGBM),  and  Adaptive  Boosting  (AdBoost).  The
ratio of the training set to the test set was 7:3. Early
anemia  risk-screening  models  were  established
based  on  facial  and  tongue  parameters  filtered  by
LASSO.  All  machine  learning  models  were
constructed using Python software version 3.8. 

Deep Learning

The  anemia  and  healthy  control  groups  were
classified  with  ResNet  as  the  primary  deep  learning
structure. The ResNet50V2 model was used to extract
features  from  facial  and  tongue  images  segmented
using the TDAS software. The purpose of this step was
to extract representative features from the images to
support subsequent classification tasks. To fully utilize
the  color  space  information,  researchers  organized
the  color  and  texture  features  of  faces  and  tongues
after  LASSO  analysis  into  a  one-dimensional  array.
These  features,  excluding  the  interference  of
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multicollinearity,  reflected  the  inherent  differences
between women with and without anemia in terms of
facial  and  tongue  color  and  texture.  Conv1D  was
employed  to  extract  core  features  from  these  color
and  texture  characteristics,  further  identifying  the
most  useful  information  for  classification.  Next,  the
image  feature  information  extracted  by  the
ResNet50V2  model  was  fused  with  the  color-space
features  extracted  by  the  Conv1D  model.  This  step
was  achieved  through  a  concat  operation  by  fusing
features  from  three  dimensions  at  the  feature  level.
This  feature  fusion  method  can  fully  utilize  image,
color,  and  texture  information,  thereby  improving
classification accuracy. Finally, a fully connected layer
is  used  to  complete  the  classification.  The  fully
connected layer can map the previous feature fusion
results  to  different  classification  labels,  enabling
decision  making  for  classifying  the  anemia  and
healthy  control  groups.  During  the  classification
process,  the  softmax  function  was  adopted  as  the
activation  function,  which  can  output  a  probability
value  for  each category  indicating  the  likelihood of  a
sample  belonging  to  that  category.  The
implementation  path  of  this  model  is  illustrated  in
Figure 3. 

Model Evaluation

The  above  parametric  models  were  trained  and
tested, and the importance of the test set indicators
in  the  different  models  was  analyzed  to  select  the
optimal  model.  The  anemia  screening  model  was
evaluated using the ROC curve,  area under the ROC
curve  (AUROC),  precision-recall  (PR)  curve,  and
Decision  Curve  Analysis  (DCA).  The  ROC  curve  and
AUROC  can  be  used  to  directly  assess  the  ability  of
the  model  to  distinguish  patients  with  anemia.  A
larger  AUROC indicates  better  discriminatory  power
for the prediction model. The PR curve and the area
under  the  PR  curve  (AP)  can  be  used  to
comprehensively  evaluate  precision  and  recall  and
are  sensitive  to  the  prediction  of  positive  events.
They are often used to evaluate models when there
are fewer positive events than when there are more
negative  events.  DCA  assesses  the  effectiveness  of
the  prediction  model  in  decision-making  by
quantifying  the  net  benefit  at  different  threshold
probabilities[41]. 

RESULTS
 

Statistical Analysis of Face Data

Comparison  of  facial  complexion  between  the

anemia  and  healthy  control  groups  indicated
differences  in  facial  color  and  texture  (P <  0.05).
Specifically,  with  respect  to  color,  the  most
significant  differences  in  facial  color  between  the
two groups of participants were observed in terms of
a-values  and  b-values.  The  a-values  of  the  facial
anemia group were lower than those of the healthy
control group for different facial areas in individuals
of  the  same  age  range.  The  b-values  in  the  anemia
group were higher than those in the healthy control
group.  No  difference  was  observed  in  the  L-values
for  the  whole  face;  however,  specifically  in  certain
facial  areas  such  as  the  right  zygomatic  region,
cheek,  nose,  lips,  and  mandible,  the  L-values  of  the
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anemia group were higher than those of the healthy
control group. Significant differences in facial texture
were  observed in  the  30–39 age  group.  Specifically,
ASM,  which  reflects  the  uniformity  of  image
distribution  and  texture  coarseness,  was  higher  in
the  anemia  group,  whereas  ENT,  which  reflects  the
complexity  of  image  distribution,  was  lower  in  the
anemia  group.  There  was  no  difference  in  the  a-
value,  which  reflects  the  degree  of  redness,  in  the
comparison  of  lips  across  different  age  groups.  The
statistical analysis results of facial data from the two
groups are presented in Figure 4 and Supplementary
Tables S3 and S4. 

Statistical Analysis of Tongue Data

Comparison  of  tongue  features  between  the
anemia  and  healthy  control  groups  indicated
significant differences in the color and texture of the
tongue  body  and  tongue  coating  (P <  0.05).  With
regard  to  color,  the  L-values  of  tongue  quality  and

tongue  coating  in  the  anemia  group  across  all  age
groups  were  greater  than  those  in  the  healthy
control  group.  The  a-values  of  the  anemia  group
were lower than those of the healthy control group,
and  the  b-values  of  the  anemia  group  were  greater
than those of the healthy control group. There were
also  differences  in  the  texture  characteristics  of
tongue quality and tongue coating in the 40–49-year
age  group,  specifically  manifested  in  the  texture
characteristics  of  TB-CON,  TC-CON,  TB-ENT,  TC-ENT,
TB-MEAN,  and  TC-MEAN,  which  were  lower  in  the
anemia group than in the healthy control group. TB-
ASM and TC-ASM texture indicators were greater in
the anemia group than in the healthy control group.
No  difference  in  par-All  and  per-Part  was  noted
between  the  anemia  group  and  the  healthy  control
group. The statistical  analysis results of tongue data
from  the  two  groups  are  presented  in Figure  5 and
Supplementary Table S5. 
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Figure 4. Comparison  of  facial  image  color  and  texture  indices  between  two groups  of  participants.  (A)
Comparison of color indices between the healthy control group and the anemia group for the whole face
and nine facial  areas (without distinguishing age groups).  (B) Comparison of color indices for the whole
face (with age groups distinguished). (C) Comparison of texture indices for the whole face (taking ASM_0
and ENT_0 as examples). (D) Comparison of L-values across nine facial areas. (E) Comparison of a-values
across  nine  facial  areas.  (F)  Comparison  of  b-values  across  nine  facial  areas.  The  horizontal  axis
represents different indices,  while "20–29," "30–39," and "40–49" indicate age ranges.  The vertical  axis
represents color values and texture values. Compared with the healthy control, *P < 0.05; **P < 0.01; ***P
< 0.001. ASM, angular second moment. ENT, entropy.
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Age  Trends  of  Facial  Data  from  Women  with
Anemia

The  trends  in  various  indicators  related  to  the
face  and  lips  of  women  with  anemia  changed
differently with age. Specifically, for the overall facial
area,  as  age  increased,  the  L-value  showed  a
downward  trend,  whereas  the  a- and  b-values
showed an upward trend (P < 0.05). However, the a-
value of lip color decreased with age (P > 0.05). The
a-value of lip color was greater than the overall facial
a-value across the different age groups, whereas the
L-value  was  always  lower  than  the  overall  facial  L-
value.  For  women  with  anemia,  the  facial  texture
indicators ASM and IDM showed a downward trend
with  increasing  age,  while  the  CON  and  ENT
indicators  showed  an  upward  trend  (P <  0.05).
Statistical  analysis  results  of  age trends in color  and
texture indicators for the two sets of data are shown
in Figure 6 and Supplementary Tables S6-S7. 

Screening  of  Characteristic  Factors  in  Participants
with Anemia

LASSO  regression  was  applied  for  feature
selection  on  a  high-dimensional  dataset  comprising
62  indicators  encompassing  the  facial  and  tongue
image  metrics  of  the  participants.  The  LASSO
algorithm  adjusts  the  model's  complexity  through
the λ value, where a higher λ value results in greater
variable compression, leading to a more streamlined
model.  As  evident  from Figure  7(a),  as  the  Log(λ)

parameter increases, the penalty imposed by LASSO
gradually  intensifies,  causing  a  decrease  in  the
number  of  selected  variables.  Furthermore,  the
coefficient values of the variables gradually converge
as  the  Log(λ)  parameter  increases.  This  process  is
illustrated in Figure 7(b). The results show that after
LASSO  regression  screening  (λ  =  0.015)  of  the  62
indicators,  a  total  of  19  variables  were  identified  as
highly correlated with anemia. These variables were:
total-a,  total-b,  lip-L,  lip-b,  foreh-b,  glab-a,  glab-b,
jaw-a,  lzyg-b,  rzyg-a,  lcheek-a,  rcheek-a,  nose-b,  TC-
a, TC-b, TB-L, TB-a, TB-ASM, and TB-MEAN. 

Comprehensive Analysis of Classified Multi-Model

Based  on  facial  and  tongue  data,  we  evaluated
multiple  machine  learning  models  to  construct  a
female  anemia  screening  model  and  conducted  a
detailed  comparison  of  their  performances  on  the
test  set.  From  the  overall  performance  of  the
models,  the  ANN  and  XGBoost  demonstrated
superior  performance  across  multiple  evaluation
metrics.  The  ANN  achieved  an  AUC  of  0.849,  an
accuracy  of  0.781,  and  an  F1  score  of  0.533,  which
stood out among the models. XGBoost, with an AUC
of  0.802,  an  accuracy  of  0.825,  and  an  F1  score  of
0.632, exhibited high accuracy and precision and also
performed  well  in  terms  of  specificity  (Figure  8a,
Supplementary Table S8). These two models provide
relatively  comprehensive  performance  in  detecting
anemia  cases.  According  to  the  PR  curve,  the  ANN
model  demonstrated  the  best  performance  on  the

 

T
B

-L
T

B
-a

T
B

-b

T
C

-L
T

C
-a

T
C

-b

T
B

-L
T

B
-a

T
B

-b

T
C

-L
T

C
-a

T
C

-b

T
B

-L
T

B
-a

T
B

-b
T

C
-L

T
C

-a
T

C
-b

20−29 30−39 40−49

0

10

20

30

40

50

60

70

To
n

g
u

e
 c

o
lo

r 
sp

a
ce

 v
a

lu
e

Healthy controls
Anemia

*
*

*

**

***

**

*

*

*
*

*

*
*

*

**

**

**

T
B

-C
O

N
T

B
-A

S
M

T
B

-E
N

T
T

B
-M

E
A

N
T

C
-C

O
N

T
C

-A
S

M
T

C
-E

N
T

T
C

-M
E

A
N

T
B

-C
O

N
T

B
-A

S
M

T
B

-E
N

T
T

B
-M

E
A

N
T

C
-C

O
N

T
C

-A
S

M
T

C
-E

N
T

T
C

-M
E

A
N

T
B

-C
O

N
T

B
-A

S
M

T
B

-E
N

T
T

B
-M

E
A

N
T

C
-C

O
N

T
C

-A
S

M
T

C
-E

N
T

T
C

-M
E

A
N

20−29 30−39 40−49

0

0.05

1.0

1.5

100

140

180

220

To
n

g
u

e
 t

e
x
tu

re
 f

e
a

tu
re

 v
a

lu
e

Healthy controls
Anemia

**
*

**

**

**

*
*

*

**

**
*

**

Figure 5. Compares  the tongue image color  and texture indicators  between two groups of  participants.
(A) Lab color space indicators. (B) Texture indicators. The horizontal axis represents different indicators,
with 20–29, 30–39, and 40–49 denoting age ranges. The vertical axis represents color values and texture
values.  Compared with  the  healthy  controls, *P <  0.05; **P < 0.01; ***P < 0.001.  TC,  tongue coating.  TB,
tongue body. CON, contrast. ASM, angular second moment; ENT, entropy; MEAN, mean value.
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test  set,  with  the  highest  AP  value  (Figure  8b).  We
used  the  DCA  to  assess  the  net  benefit  to  patients
based  on  clinical  decisions  guided  by  the  predictive
model.  The  DCA  evaluation  indicated  that  the  ANN
offers  superior  clinical  applicability  (Figure  8c).  A
comprehensive  analysis  suggested  that  the  ANN
model was optimal. 

Model  Evaluation  Based  on  the  Feature  Fusion
Model

By  integrating  images  with  color  space
characteristics and utilizing deep learning models for
feature  extraction  and  classification,  accurate
classification  of  female  anemia  was  achieved.  The
results indicate that the fusion model, which had an

 

A B C

Figure 6. The trend changes  in  facial  image color  and texture  indicators  across  different  age  groups  for
female anemia patients. (A) Full-face color indicators. (B) Lip color indicators. (C) Facial texture indicators.
Compared with the 20–29 age group, *P < 0.05; **P < 0.01; ***P < 0.001; Compared with the 30–39 age
group, #P <  0.05; ##P <  0.01; ###P <  0.001.  ASM,  angular  second  moment;  CON,  contrast;  ENT,  entropy;
IDM, inverse different moment.

 

A B

Figure 7. The results of variable selection using LASSO regression. (A) A plot of Log(λ) versus the number
of selected variables. The vertical axis represents the minimum mean squared error, the upper horizontal
axis indicates the number of predictor variables, and the lower horizontal axis corresponds to the Log(λ)
value associated with the λ parameter. Vertical dashed lines are drawn at the points of minimum mean
squared error (λ = 0.015) and the standard error of the minimum distance (λ = 0.043). (B) A plot of Log(λ)
versus  the  coefficient  values  of  the  variables.  The  vertical  axis  shows  the  coefficient  values  of  the
predictor variables, the top horizontal axis indicates the number of predictor variables, and the bottom
horizontal axis corresponds to the Log(λ) associated with the λ parameter.
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AUC and specificity comparable to those of the ANN
model,  outperformed  the  ANN  model  in  terms  of
accuracy,  precision,  sensitivity,  and  F1-score
(Figure  9a,  Supplementary  Table  S9).  Thus,  the
predictive  performance  of  the  fusion  model  was
accurate. The PR curve of the fusion model is located
in  the  top-right  corner,  with  an  AP  value  of  0.9,
indicating  superior  model  performance  (Figure  9b).
The  clinical  decision  curve  (DCA)  of  the  predictive
model  revealed that when the probability  threshold
ranged from 35% to  95%,  the  clinical  net  benefit  of
predicting female anemia events using the predictive
model  in  the  training  set  was  greater  than  that  of

both  the  "full  intervention"  and  "no  intervention"
strategies.  Within  this  range,  the  model
demonstrates  good  clinical  applicability  (results
shown  in Figure  9c).  These  results  suggest  that  the
ResNet50V2 and Conv1D fusion models can be used
to  classify  female  anemia  populations.  It  can  be
observed that by combining the advantages of image
and data features, the model can better balance the
predictive  capabilities  of  different  categories,
optimize the recognition of  minority  classes,  reduce
false positives and false negatives, and demonstrate
better evaluation performance than a single model. 

 

A
B

C

Figure 8. Comprehensive  analysis  of  test  set  results  for  different  machine  learning  algorithms.  (A)  ROC
curve and AUC for the test set. All participants were divided into training and test sets at a 7:3 ratio. (B)
the PR curve and AP value for the test set, with Precision on the y-axis and Recall on the x-axis. A PR curve
closer  to  the  top  right  corner  indicates  better  model  performance.  In  cases  where  the  PR  curves  of
different prediction models cross, the AP value under the PR curve is used for further quantification and
comparison  of  different  models.  (C)  DCA  for  the  test  set,  where  the  x-axis  represents  threshold
probability,  and the y-axis represents net benefit.  The two dashed lines above the x-axis represent two
extreme cases: the light dashed line indicates that all indicators are negative, resulting in a net benefit of
0  for  treatment.  The  dark  dashed  line  represents  all  prediction  indicators  being  positive,  with  a  net
benefit  represented  by  a  negative  slope  diagonal  line.  The  remaining  solid  lines  represent  different
models.  The  further  the  solid  line  is  from  the  two  extreme  lines  and  the  larger  the  area  it  forms,  the
better the clinical model's effectiveness.
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DISCUSSION

After  statistically  analyzing  the  relationship
between  face  and  tongue  color,  texture  indicators,
and  anemia  in  women,  our  study  yielded  several
interesting  results.  In  this  study,  face  and  tongue
color  and  texture  indicators  served  as  predictive
variables  for  anemia  in  women.  CIELab was  used to
express  the  color  characteristics  of  the  face  and
tongue  because  it  is  a  physiologically  based  color
system  that  can  objectively  measure  the  visual
perception  of  color,  thus  quantitatively  describing
the  magnitude  of  perceived  color  differences  or
changes[42].

The  research  results  indicated  that  in
comparisons  of  facial  color  within  the  same  age
group,  female patients  with anemia exhibited lower
a-values  and  higher  L-values  and  b-values  on  both
their  faces  and  tongues.  In  terms  of  color,  women
with anemia in different age groups tended to have
lower  a-values  and  higher  b-values  in  their  facial
complexion,  tongue  quality,  and  tongue  coating,

with  higher  L-values  in  certain  facial  areas.
Specifically,  the  a-value  represents  the  redness  of
the color, and a lower value indicates a lesser degree
of  redness  in  the  facial  skin  and  tongue  of  women
with anemia. The b-value signifies the yellowness of
the  color,  with  a  higher  value  indicating  a  more
yellowish  hue  in  the  facial  skin  and  tongue  of  this
population. The L-value reflects the brightness of the
color,  with  a  higher  value  indicating  brighter  and
fairer  facial  skin  among  women  with  anemia.
Changes  in  peripheral  blood  components  affect  the
optical properties of the skin, resulting in alterations
in  its  diffuse  reflectance  spectrum[43].  Jing  et  al[44].
conducted  a  unified  comparison  and  analysis  of
diffuse  reflectance  spectra  and  colors  under
different  total  hemoglobin  concentrations  and
oxygen  saturation  levels  using  Monte  Carlo
simulation.  They  found  that  an  increase  in
hemoglobin  concentration  led  to  a  decrease  in
diffuse  reflectance  across  the  entire  visible
spectrum,  causing  the  skin  to  appear  yellowish.  A
decrease  in  the  oxygen  saturation  resulted  in  a

 

C

A
B

Figure 9. the analysis results of the test set for the ResNet50V2 and Conv1D fusion model. (A) ROC curve
and AUC of the test set. All participants were divided into training and test sets at a 7:3 ratio. (B) PR curve
and AP value for the test set, with Precision on the y-axis and Recall on the x-axis. PR curve closer to the
top right corner indicates better model performance. (C) DCA for the test set, where the x-axis represents
the threshold probability, and the y-axis represents the net benefit.
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gradual  reduction  in  the  red  component.  Previous
studies  on  anemia  have  also  found  a  correlation
between  anemia  and  pallor  in  the  face,  lips,  and
conjunctiva[29,45–47].  There  was  no  difference  in  L-
values  when  whole  faces  of  the  two  groups  were
compared.  A  possible  reason  is  that  most  of  the
participants  in  this  study  had  mild  anemia,  and  the
main  manifestations  of  anemia  in  the  facial
complexion were changes  in  a- and b-values.  Lower
values of the texture indicators CON, ENT, and MEAN
and  higher  ASM  values  reflect  finer  facial,  tongue,
and tongue coating textures. In this study, the facial
texture  indicator  ENT  was  lower  in  women  aged
30–39 compared than in healthy controls, while ASM
was higher. For women aged 40–49, the tongue and
tongue  coating  texture  indicators  CON,  ENT,  and
MEAN were lower than those of the healthy control
group,  whereas  ASM  was  higher.  Anemia-affected
female  population  tend  to  have  delicate  facial
textures,  refined  tongue  quality,  and  smoother
tongue coatings.

As  age  increases,  the  facial  color  and  texture
indicators of female participants with anemia exhibit
a  similar  trend  of  change  compared  with  healthy
females.  Specifically,  women  with  anemia
experience a  decrease in  the L-value,  an increase in
the  a- and  b-values,  and  an  increase  in  the  ASM
value  of  their  facial  skin.  This  signifies  that  as  age
progresses,  the  brightness  of  the  facial  skin
diminishes, the red and yellow components increase,
and the skin texture becomes rougher.

Skin  color  is  formed  by  the  interaction  between
absorption  and  reflection.  When  light  hits  the  skin
surface,  it  may  be  absorbed  by  pigments  such  as
melanin,  hemoglobin,  and  carotenoids  or  reflected
by  transparent  keratin  particles  in  the  epidermis  or
collagen  fibers  in  the  dermis.  Previous  research  has
shown  a  strong  exponential  negative  correlation
between  melanin  content  in  the  epidermis  and  the
L-value. Even a small change in the melanin content
can cause a significant change in the L-value[48]. With
increasing  age,  melanin  synthesis  continuously
increases  to  basal  levels  under  the  influence  of
environmental  factors.  In  addition,  color  L-value
measurements  revealed  a  positive  correlation
between  dermal  collagen  density  and  skin
brightness.  Collagen  density  negatively  correlates
with  age  and  light  absorption  in  the  dermis[49].  In
addition  to  being  influenced  by  human  skin  blood
flow[50],  the  a-value  is  also  affected  by  the  total
melanin  content  in  the  epidermis[48],  which  means
that  as  the  total  melanin  content  in  the  epidermis
increases,  the  a-value  also  increases.  However,  this

correlation was much weaker than the impact of the
L-value  on  melanin  content.  Studies  have  indicated
that  the  extracellular  matrix  plays  a  crucial  role  in
maintaining  the  elastic  appearance  of  the  dermis
and  provides  a  suitable  environment  for  skin  cells.
Significant  changes  occur  in  the  morphology  and
function  of  the  extracellular  matrix  with  increasing
age[51], along with various exogenous factors such as
the  secretion  of  matrix  metalloproteinase  (MMP)
induced  by  ultraviolet  radiation[52],  a  decrease  in
collagen content, and an increase in the oxidation of
skin  collagen  fibers.  The  oxidized  collagen  fibers
appeared  yellow,  leading  to  an  increase  in  the  b-
value.  A  decrease  in  collagen  tissue,  a  disordered
arrangement  of  collagen  fibers,  interruption  of  the
elastic fiber network, and an increase in skin texture
were  observed.  Although  the  difference  was  not
statistically  significant,  the  a-value  of  lip  color
decreased significantly with age. A possible reason is
that the stratum corneum of the lips is relatively thin
and the influence of melanin is less; therefore, blood
content is the main factor affecting the a-value. The
total vascular area of the dermis and the number of
blood vessels  in  the  upper  lip  dermis  decrease  with
age[53,54].  Hemoglobin  is  the  main  source  of  the  red
color in the skin, and the presence of anemia may be
the reason for the decrease in the a-value.

Our  study  utilized  facial  and  tongue  images  of
the  participants  combined  with  machine  learning
techniques  to  establish  a  risk-screening  model  for
female  anemia.  The  ability  of  machine  learning
classification methods and deep learning approaches
to detect  anemia in the participants was compared.
When using the ANN and XGBoost models to detect
patients  with  anemia,  both  AUROC  and  accuracy
were  high,  indicating  relatively  low  false-negative
and false-positive rates. This suggests that the model
can  detect  the  vast  majority  of  anemia  in  most
patients.  Additionally,  in  the  context  of  this  study,
the  data  were  imbalanced,  with  the  number  of
patients  with  anemia  being  far  fewer  than  that  of
healthy  individuals.  In  such  scenarios,  models  with
higher  AUC  are  more  suitable  for  detecting  rare
events  or  minority  class  samples  because  they  can
better  differentiate  between  different  classes  of
samples.  Even  if  the  accuracy  is  low,  identifying
important  minority  class  samples[55].  Therefore,  the
ANN  model  has  higher  practical  clinical  value.  The
model  predicts  the  risk  of  female  anemia  based
solely  on  19  facial  and  tongue  images,  offering
advantages  such  as  non-invasiveness,  safety,
efficiency,  and  accuracy.  It  is  highly  suitable  for
large-scale  risk  screening  of  anemia  in  women.
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Although  other  machine  learning  classification
models  such  as  LG  and  SVM  exhibited  high  AUC
values  (0.834  and  0.821,  respectively),  they
performed  poorly  in  terms  of  sensitivity  and  f1-
score.  In  particular,  LG  had  a  sensitivity  of  only
0.326,  making  it  ineffective  in  identifying  anemia
cases and resulting in a low f1-score. The KNN, while
achieving perfect  accuracy (1.0),  had a  sensitivity  of
only  0.043,  failing  to  effectively  identify  anemia
cases  and  leading  to  an  extremely  low  f1-score,
indicating  that  it  had  not  learned  effective
information  to  differentiate  between  healthy
individuals  and  patients  with  anemia.  AdaBoost
performed  relatively  poorly  in  terms  of  AUC  and
accuracy,  with  an  unsatisfactory  f1-score  and
precision,  showing  poor  model  performance.
Additionally,  the  DT  and  RF  models  performed  well
in  terms  of  the  overall  accuracy,  with  accuracies  of
0.781 and 0.788, respectively, and high precisions of
0.704  and  0.75,  respectively.  However,  their
sensitivities  are  low,  limiting  their  ability  to  detect
anemia. Although NB has a relatively high sensitivity
(sensitivity  =  0.565),  it  has  a  low  precision  and  F1
score,  tending  to  misidentify  healthy  individuals  as
having  anemia.  Therefore,  further  optimization  is
required to enhance their  performance for  practical
applications.

Compared  with  using  images  alone  for  deep
learning  modeling,  the  fused  feature  model  can
further  improve  the  detection  ability  of  female
anemia. Both the AUROC and accuracy increased by
over  80%.  The  image  and  color  space  features
complement and mutually reinforce each other after
fusion.  This  model  has  improved  accuracy  in
detecting patients with anemia and has the ability to
identify  patients  with  mild  anemia.  However,  the
sensitivity  was  slightly  low  because  of  the
misidentification of  patients  with anemia as  healthy
individuals  in  the  model.  Additionally,  compared
with  the  facial  and  tongue  color  and  texture
indicators,  the  fused  features  did  not  significantly
improve  the  model's  screening  ability  for  female
anemia.  This  suggests  that  if  we  want  to  improve
accuracy, we need to introduce new indicators.

One  of  the  strengths  of  our  study  was  that  all
participants  were  from  a  physical  examination
center,  with  the  majority  being  young  and  middle-
aged  women  who  had  a  single  diagnosis  of  anemia
or were only diagnosed with anemia. Therefore, the
facial  and  tongue  images  were  representative.
Nevertheless,  the  participants  were  from  a  wide
range  of  occupations  and  geographical  regions,
resulting in a more diverse collection of images. Our

study  compared  the  color  and  texture  indicators  of
facial  and  tongue  images  between  anemic  and
healthy populations,  screened the facial  and tongue
features  most  relevant  to  anemia  status,  and
constructed  a  high-accuracy  anemia  risk-screening
model.

In  addition  to  diagnosis,  our  study  meets  the
design  requirements  for  multiple  scenarios.
Traditional facial and tongue diagnostic methods rely
on  the  surrounding  environment  and the  subjective
experience  of  doctors,  which  can  easily  lead  to
deviations.  However,  obtaining  rapid  blood  test
results  is  not  feasible  in  many  local  clinics  or
resource-limited  areas.  In  this  study,  we  used  a
TFDA-1  tongue  and  face  diagnosis  instrument  to
collect  and  analyze  facial  and  tongue  photographs.
By  employing  machine  learning  methods  to  explore
the inherent patterns in the data, we achieved non-
invasive,  rapid,  and accurate detection of  anemia in
women. In the future, our research will facilitate the
rapid  determination  of  whether  a  patient  has
anemia  and  provide  reasonable  diagnostic  and
treatment recommendations. Mild and moderate-to-
severe  anemia  exhibit  different  symptoms  or  signs,
such  as  shortness  of  breath,  difficulty  in  breathing,
and rapid heart  rate in  patients  with severe anemia
at  rest.  These  characteristics  can  be  utilized  to
establish  a  connection  between  facial  and  tongue
images  and  the  severity  of  anemia,  which  is  a
complex but meaningful challenge. 

Strengths and Limitations

Our non-invasive risk-screening model for female
anemia  is  a  successful  exploration  of  machine
learning  technology  in  the  medical  field.  This  study
employs  both  classical  machine  learning  and  deep
learning  algorithms  to  maximize  their  respective
strengths by combining prior  knowledge with latent
features.  We used facial  and tongue image datasets
to  optimally  classify  female  patients  with  and
without  anemia.  Our  research  successfully
demonstrated  that  facial  and  tongue  information
can serve as new biomarkers for screening the risk of
anemia  in  women  using  machine  learning.  The
model  exhibited  a  good  detection  capability  for
female  patients  with  anemia.  Furthermore,  the
detection  process  was  non-invasive.  This  study
provides  a  feasible  method  for  establishing  a
correlation  between  anemia  and  facial  and  tongue
imaging findings.

However, this study has some limitations. First, it
was a single-center investigation with a uniform sex
and  age  structure  in  the  patient  population  and
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relatively  similar  dietary  compositions.  Therefore,
our findings may not be generalizable to other ethnic
groups.  Second,  the  sample  size  of  this  study  was
insufficient,  especially  given  the  significant  disparity
between  the  number  of  patients  with  and  without
anemia.  Third,  this  study  did  not  include  middle-
aged  or  older  women  aged  over  50  years  with
anemia.  Anemia  is  relatively  prevalent  among
middle-aged  and  elderly  populations  in  China[56].
Especially  in  the  elderly,  anemia  is  an  independent
risk factor for  a poor prognosis[57].  In the future,  we
need  to  expand  the  age  range,  conduct  further
external  validation,  and  explore  the  association
between  facial  and  tongue  features  and  anemia.
Finally,  the  sensitivity  of  the  model  for  detecting
anemia  in  young  and  middle-aged  women  was
0.565,  with  a  slightly  high  false-negative  rate,
indicating that the model still requires improvement. 

CONCLUSION

This  study  successfully  analyzed  differences  in
facial  and  tongue  data  as  well  as  age  distribution
trends  between  anemic  and  healthy  women  based
on  color  and  texture  features  extracted  from  facial
and  tongue  images.  Additionally,  classic  machine
learning  and  deep  learning  algorithms  were
employed  to  extract  deep  features,  ultimately
establishing  a  screening  model  for  female  anemia
risk.  This  model  enables  the  non-invasive  detection
of  anemia  in  women,  demonstrating  that  facial  and
tongue  information  serves  as  a  potential  TCM
phenotype and that facial and tongue image features
correlate  with  hemoglobin  levels.  In  the  future,  we
plan  to  collect  more  data,  extract  additional
features,  and  enhance  model  performance,
providing  a  non-invasive  assessment  method  based
on different hemoglobin levels.
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