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Abstract

Objective　To assess  the independent  and combined effects  of  air  pollutants,  meteorological  factors,
and greenspace exposure on new tuberculosis (TB) cases.

Methods　 TB  case  data  from  Shanghai  (2013–2018)  were  obtained  from  the  Shanghai  Center  for
Disease  Control  and  Prevention.  Environmental  data  on  air  pollutants,  meteorological  variables,  and
greenspace  exposure  were  obtained  from  the  National  Tibetan  Plateau  Data  Center.  We  employed  a
distributed-lag nonlinear model to assess the effects of these environmental factors on TB cases.

Results　Increased TB risk was linked to PM2.5,  PM10,  and rainfall,  whereas NO2,  SO2,  and air pressure
were  associated  with  a  reduced risk.  Specifically,  the  strongest  cumulative  effects  occurred  at  various
lags: PM2.5 (RR = 1.166, 95% CI: 1.026–1.325) at 0–19 weeks; PM10 (RR = 1.167, 95% CI: 1.028–1.324) at
0–18 weeks; NO2 (RR = 0.968, 95% CI: 0.938-0.999) at 0–1 weeks; SO2 (RR = 0.945, 95% CI: 0.894–0.999)
at 0–2 weeks; air pressure (RR = 0.604, 95% CI: 0.447–0.816) at 0–8 weeks; and rainfall (RR = 1.404, 95%
CI:  1.076–1.833)  at  0–22  weeks.  Green  space  exposure  did  not  significantly  impact  TB  cases.
Additionally, low temperatures amplified the effect of PM2.5 on TB.

Conclusion　 Exposure  to  PM2.5,  PM10,  and  rainfall  increased  the  risk  of  TB,  highlighting  the  need  to
address air pollutants for the prevention of TB in Shanghai.
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INTRODUCTION

T uberculosis (TB), caused by Mycobacterium
tuberculosis (MTB), is a chronic respiratory
infection  that  remains  the  second  leading

cause  of  infectious  disease-related  mortality
worldwide[1].  Despite  significant  advances  in  global

TB  control  efforts,  TB  continues  to  present  a
substantial  public  health  challenge[2,3].
Approximately  one-quarter  of  the  global  population
is  estimated  to  be  infected  with  MTB[1].  In  2022,
there  were  10.6  million  new  TB  cases  worldwide,
with  an  incidence  rate  of  133  per  100,000  people,
and  1.3  million  TB-related  deaths[1].  Given  the
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ongoing  burden  of  TB,  identifying  the  factors  that
influence its occurrence and progression is essential
for  effectively  advancing  the  World  Health
Organization’s "End TB Strategy"[4].

Increasing evidence suggests that environmental
factors—including  air  pollution,  meteorological
conditions, and green space—play significant roles in
the  development  and  progression  of  TB[5–10].  Air
pollution  can  exacerbate  TB  by  impairing  immune
function  and  increasing  oxidative  stress  and
inflammation  in  the  patient[11–13].  Meteorological
factors  may  affect  TB  through  mechanisms  that
influence the survival  of  MTB,  or  by  altering human
behavior  and  susceptibility[5].  Additionally,  green
space may mitigate TB transmission by enhancing air
quality, encouraging physical activity, and improving
the immune response[14,15].

Numerous  studies  have  investigated  the
association between long-term (monthly and annual)
and  short-term  (daily  and  weekly)  exposure  to
meteorological  factors  and  air  pollution  in  patients
with  TB.  However,  findings  remain
inconsistent[5,6,8–10,16].  A  meta-analysis  demonstrated
a significant positive correlation between rainfall and
TB risk, whereas it showed no significant associations
with  temperature,  humidity,  air  pressure,  and
sunshine  duration[5].  Conversely,  a  study  in
Northwest China reported that temperature, rainfall,
wind  speed,  and  relative  humidity  significantly
increased  TB  incidence[7].  A  recent  meta-analysis
suggests  that  long-term  exposure  (>  7  weeks)  to
particulate  matter ≤ 10  um  (PM10),  sulfur  dioxide
(SO2), and nitrogen dioxide (NO2) is associated with a
higher  incidence  of  TB[9].  Another  meta-analysis
confirmed  a  positive  association  between  TB
incidence  and  exposure  to  particulate  matter ≤ 2.5
um  (PM2.5),  PM10,  and  SO2

[16].  Thus,  the  association
between  air  pollutants,  meteorological  factors,  and
TB incidence remains unclear.

Research  on  the  relationship  between  green
space  and  TB  incidence  is  limited.  One  study  found
that  increased  exposure  to  green  space  reduced
mortality  among  patients  with  MDR-TB  in  Zhejiang
Province,  China[17].  Additionally,  an  exosome-wide
association  study  combined  with  machine  learning
revealed  that  higher  proportions  of  forests,
shrublands,  and  grasslands  were  associated  with
lower  TB  prevalence[7].  Considering  the  potential
lagged  effects  of  greenspace  exposure  on  TB
incidence,  a  time-series  analysis  may  be  an
appropriate  method  to  study  this  impact.  However,
to date, no such studies have been conducted.

Notably,  there  may  be  interactions  among

environmental  factors[18-20].  The  inconsistent
conclusions  regarding  the  association  between
environmental  factors  and  TB  incidence  may  be
partly due to a failure to consider these interactions.
Previous studies have explored the combined effects
of  environmental  factors  on  mortality,
cardiovascular  diseases,  hand-foot-and-mouth
disease,  and  other  illnesses[21-24].  However,  the
combined  effects  of  air  pollutants,  meteorological
factors, and greenspace interactions on TB incidence
are  not  well  established.  Meteorological  factors  are
crucial  determinants  of  air  pollutant
concentrations[25];  for  example,  the  wind  speed  can
alter  pollutant  levels[25].  These  factors  may  also
exacerbate the impact of pollutants on TB incidence
by  affecting  the  patient;  for  example,  temperature
fluctuations may induce physiological stress, thereby
modifying  the  body’s  responses  to  toxins[26].
Additionally,  growing  evidence  suggests  that  green
space  can  reduce  air  pollution  and  regulate
temperature[27-29].  This  implies  that  potential
interactions  among  air  pollutants,  meteorological
factors,  and  green  space  exposure  influence  TB
incidence.  Further  research  is  required  to
comprehensively  understand  the  combined  effects
of environmental exposure and TB incidence.

This  study,  therefore,  aimed  to  apply  a  time-
series  analysis  to  quantify  and  evaluate  the
independent and interactive effects of air pollutants,
meteorological factors, and greenspace exposure on
TB  cases  in  Shanghai.  We  employed  a  method
involving  the  multiplication  of  a  cross-basis  matrix
with  stratified  terms  to  analyze  the  interactions
across  multiple  classification  levels,  thereby
capturing  critical  information  regarding  nonlinear
and  lagged  effects.  These  results  could  provide
robust  scientific  evidence  to  guide  strategies  for  air
pollution  control,  greenspace  development,  and  TB
prevention. 

MATERIALS AND METHODS
 

Study Region

Shanghai,  located  between  the  latitudes  of
30.40°–31.53°  N  and  longitudes  of  120.52°–122.12°
E, covers an area of 6340.5 km². By the end of 2022,
the city—which can be divided into 16 districts—had
a  permanent  resident  population  of  24.76  million,
with  a  density  of  3,905  people  per  km²  and  a  gross
domestic product of 4.47 trillion Yuan[30]. Shanghai is
situated in the Yangtze River Delta alluvial plain and
has  an  average  elevation  of  4  m.  The  region
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experiences  a  subtropical  monsoon  climate  with
short  springs  and  autumns,  long  winters  and
summers,  abundant  sunshine,  and  significant
rainfall.  In  2022,  the  air  quality  excellence  rate  was
87.1%[30].  This percentage represents the proportion
of days classified as having “excellent” or “good” air
quality,  according  to  the  Technical  Regulation  on
Ambient Air Quality Index (on trial) (HJ 633-2012)[31]. 

TB Patient Data

In 2005, the Shanghai Center for Disease Control
and Prevention established a TB surveillance system.
We  extracted  data  on  patients  with  TB  from  this
system  between  2013  and  2018,  including
sociodemographic details (age, sex, race, occupation,
household  register,  and  current  address),
epidemiological  information  (patient  source,  severe
case, and TB history), and laboratory results (sputum
smear,  sputum  culture,  and  molecular  test  results).
Active  TB  can  develop  shortly  after  initial  exposure,
or following a period of latent infection[32]. Our study
included  all  newly  diagnosed  patients  with  TB  in
Shanghai,  encompassing  both  primary  and
reactivated  cases,  and  excluding  patients  whose
current residence addresses were outside Shanghai.
The  diagnoses  adhered  to  the  national  diagnostic
criteria  for  TB[33],  with  cases  defined  as
bacteriologically  confirmed  (positive  sputum  smear,
sputum  culture,  or  molecular  test)  or  clinically
diagnosed  (initiated  TB  treatment  without
bacteriological  confirmation).  The  clinical  visit  time,
defined  as  the  first  visit  following  symptom  onset,
was used in this study instead of the symptom onset
date  because  the  latter  is  often  based  on  patient
recall  and  may  be  inaccurate.  Accordingly,  many
studies  examining  the  impact  of  environmental
factors  on  TB  risk  have  relied  on  the  clinical  visit
time[34,35].

Residential  addresses  were  geocoded  using  the

Gaode  Map  Application  Programming  Interface
(Gaode, AutoNavi Software Co., Ltd., Beijing, China),
and  addresses  unsuitable  for  batch  geocoding  were
manually  corrected  and  geocoded.  Geocoded  TB
case data were subsequently mapped onto a vector
map of Shanghai, using ArcMap 10.7 (Esri, Redlands,
California,  United  States).  The  spatial  density
distributions  of  the reported TB cases  from 2013 to
2018 were analyzed using kernel  density  estimation
(KDE).  Additionally,  we  performed  a  classical
multiplicative  decomposition  of  the  time  series  for
weekly  TB  cases,  from  2013  to  2018,  to  assess
periodic and seasonal variations[36]. 

Environmental Exposure Data

Daily  air  pollutant  data  were  obtained  from  the
China  High  Air  Pollutants  dataset[37–48] for  the  study
period in Shanghai, provided by the National Tibetan
Plateau Data Center (http://data.tpdc.ac.cn). Weekly
averages for PM2.5,  PM10,  NO2,  SO2,  ozone (O3),  and
carbon  monoxide  (CO)  were  calculated.  Spatial
resolutions were as follows: PM2.5, PM10, and O3 at 1
km;  NO2,  SO2,  and  CO  at  10  km.  These  pollutants
were  predicted  with  high  accuracy  based  on  a
moderate-resolution  imaging  spectroradiometer
multi-angle  aerosol  optical  depth  product,
meteorological  data,  land-use  information,  and
emission sources[37–48].

Daily  meteorological  data  with  a  spatial
resolution  of  10  km  were  sourced  from  the  China
Meteorological  Forcing  Dataset[49–51],  also  provided
by  the  National  Tibetan  Plateau  Data  Center
(http://data.tpdc.ac.cn).  Weekly  averages  were
calculated for the temperature, air pressure, relative
humidity,  solar  radiation,  rainfall,  and  wind  speed.
The  heat  index,  which  integrates  temperature  and
humidity to reflect the perceived human comfort[52],
was calculated using the following Formula 1:

heat index = { ϣ.ϪTmax − Ϣ.ϧϧ (ϣ.ϪTmax − ϤϨ) × (ϣ − Ϣ.Ϩ) + ϥϤ (relative humidity ⩽ ϨϢ%)
ϣ.ϪTmax − Ϣ.ϧϧ (ϣ.ϪTmax − ϤϨ) × (ϣ − relative humidity) + ϥϤ (relative humidity>ϨϢ%) (1)

Tmax is  the  maximum  daily  temperature  in
degrees Celsius.

To assess greenspace exposure, daily normalized
difference  vegetation  index  (NDVI)  data  with  a
spatial  resolution  of  0.05°  (approximately  5.5  km)
were  obtained  from  the  public  platform  Figshare
(https://figshare.com/)[53].  NDVI,  a  crucial  indicator
of  vegetation density,  is  based on the principle  that
chlorophyll  absorbs  visible  light  for  photosynthesis
and  reflects  near-infrared  light.  The  NDVI  was

calculated  as  the  ratio  of  the  difference  between
near-infrared and red visible light reflectance to their
sum,  ranging  from -1  to  1,  with  higher  values
indicating denser vegetation[54].

To estimate the environmental exposure of each
participant  residing  in  Shanghai,  weekly  averages  of
environmental  data  (air  pollutants,  meteorological
factors,  and  NDVI)  for  all  grids  within  the
administrative  boundaries  of  Shanghai  were
calculated. 
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Statistical Analysis

The  research  framework  is  illustrated  in
Supplementary  Figure  S1.  Initially,  the  distributions
of  TB  cases,  air  pollutants,  meteorological  factors,
and  NDVI  were  characterized  using  frequency
distributions,  means,  percentiles,  and  time-series
plots. Subsequently, we investigated the associations
between  air  pollutants,  meteorological  factors,
NDVI, and the number of new weekly TB cases using
quasi-Poisson  regression,  combined  with  a
distributed-lag  nonlinear  model  (DLNM).  Third,
subgroup  analyses  by  age,  sex,  and  household
register  were  conducted  to  explore  differential
effects.  Subsequently,  the  interaction  terms  among
the  environmental  variables  were  included  in  the
model  to  evaluate  their  combined  influence  on  TB
cases. Finally, a sensitivity analysis was performed to
assess the robustness of the results. 

Distributed-Lag Nonlinear Model

Recognizing  the  latency  and  nonlinear
exposure–response  relationships  of  ambient  air
pollutants and meteorological factors on TB cases, as
demonstrated  in  numerous  epidemiological
studies[55-58],  we  utilized  a  quasi-Poisson  regression
combined with DLNM to evaluate these associations
and  their  lag  effects.  To  mitigate  multicollinearity,
Spearman’s  correlation  coefficient  was  used  to
examine relationships among environmental factors,
excluding factors with a correlation coefficient ∣r∣
≥ 0.7  from  the  model[59].  Single-factor  regression
models  were  then  developed  for  each
environmental  factor.  The  model  is  specified  as
follows Formula 2:

log [E (Yt)] =b+∑n

p=Ϣ
βpXt−p +∑ ns (Zi,dfϣ)+

ns (time,dfϤ) + βHoliday (2)

where, E(Yt)  represents  the expected number  of
new TB cases in week t, b is the intercept term, and
X is  the  weekly  average  of  a  specific  environmental
factor. βp represents  the  effect  estimate  of  the
cross-basis  matrix  for  environmental  factors,  with  a
natural cubic spline(ns) as the basis function in both
the  exposure–response  and  exposure-lag
dimensions,  each  with  3  degrees  of  freedom
(df)[60,61].  The maximum lag time, n, was determined
based  on  the  Quasi-Akaike  Information  Criterion
(QAIC)[35]. The natural cubic spline function ns. () was
used  to  adjust  for  the  confounding  effects  of  other
environmental  factors Zi.  Long-term  trends  and

seasonality  were  controlled  for  using ns  (time,  df2)
with 6 degrees of freedom[57,62,63]. The holiday refers
to the number of public holidays in a week, with the
regression  coefficient β representing  its  effect.  To
identify  vulnerable  subpopulations,  stratified
analyses were performed according to sex (male and
female),  age  (15–65  years  and  >  65  years),  and
household  register  (migrant  or  resident).  Owing  to
the  low  proportion  of  individuals  in  the  0–14  year
age group (0.41%), this group was excluded from the
subgroup analysis.  TB risk was expressed as the lag-
specific and cumulative-lag TB relative risk (RR) with
95% confidence  intervals  (CI)  for  an  interquartile
range  (IQR)  increase  in  environmental  variables,
referenced to their median levels. 

Interaction Analysis

To  examine  the  interactive  effects  of  air
pollutants,  meteorological  factors,  and  greenspace
exposure  on  TB  cases,  we  performed  interaction
analyses.  Meteorological  variables  and  NDVI  were
categorized into three quartiles: low (< 25%), median
(25%–75%),  and  high  (>  75%).  This  model
incorporated  interaction  terms  between  the  cross-
basis matrix of air  pollutant variables and the strata
of meteorological variables or NDVI, to evaluate the
effects of air pollutant variables at different levels of
meteorological  variables  or  NDVI[21].  Similarly,  air
pollutant  variables  and  NDVI  were  divided  into
quartiles  to  assess  the  effects  of  meteorological
variables on different levels of air pollutants or NDVI.
For  instance,  to  evaluate  how  varying  levels  of
temperature  influence  the  relationship  between
PM2.5 and TB cases, the model is specified as follows
Formula 3:

log [E (Yt)] =b + cb (PMϤ.ϧt)+cb (PMϤ.ϧt)
× temperaturet +∑ ns (Zi,dfϣ)
+ ns (time,dfϤ) + βHoliday (3)

 

Sensitivity Analysis

These analyses aimed to assess the robustness of
the model. They involved adjusting the maximum lag
time,  varying  the  degrees  of  freedom  for
confounding environmental variables between 2 and
4,  and  incorporating  additional  air  pollutants  or
meteorological  factors  to  construct  multi-pollutant
and multi-meteorological models.

The threshold of significance was set at P < 0.05.
All  statistical  analyses  were  primarily  conducted
using the "dlnm,  "spline,  and "mgcv"  packages in R,
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version  4.4.1  (R  Foundation  for  Statistical
Computing, Vienna, Austria). 

Ethical Approval

The study and the use of data were reviewed and
approved  by  the  Ethical  Review  Committee  of  the
School  of  Public  Health  (Shenzhen),  Sun  Yat-sen
University (2022014). 

RESULTS
 

Characteristics  of  TB  Cases  and  Environmental
Factors

Overall,  39,579  TB  cases  were  reported  in
Shanghai  between  2013  and  2018  (Table  1).  The
spatial  KDE  of  TB  cases  (Figure  1)  revealed  that  the
highest estimated density values were concentrated
in  the  central  districts  of  Shanghai,  including
Huangpu,  Xuhui,  and  Jing'an.  Among  the  reported
cases,  68.60% were  male,  82.48% were  aged 15–65
years,  and  the  bacteriological  positivity  rate  was
47.26%.  As  shown  in Table  2,  the  average  weekly
number  of  new  active  TB  cases  was  126.60.
Supplementary Figure S2 illustrates a declining trend
in  weekly  TB  cases,  accompanied  by  clear  seasonal
and  cyclical  patterns.  During  the  study  period,  the
weekly  air  pollutant  levels,  meteorological  factors,
and  NDVI  in  Shanghai  showed  cyclical  changes
(Supplementary Figure S3). Table 2 also reveals that
the  mean  concentrations  of  PM2.5 and  PM10
exceeded  the  national  air  quality  class  II  standards
(GB3095–2012), with values above 35 μg/m3 and 70
μg/m3, respectively.

The  results  of  the  Spearman's  correlation
analysis  between  the  environmental  factors  are
provided  in  Supplementary  Table  S1.  The  weekly
mean  temperature,  heat  index,  and  NDVI  were
significantly  and  positively  correlated,  whereas  air
pressure  was  negatively  correlated  with  the
temperature,  heat  index,  and NDVI.  In  addition,  the
weekly  average  CO  concentration  was  positively
correlated  with  NO2,  SO2,  PM2.5,  and  PM10.  To
mitigate  the  risk  of  multicollinearity  in  the  analysis,
variables with  a  correlation  coefficient  ∣r∣ ≥ 0.7
were excluded from the models. 

Association  between  Air  Pollutants  and  NDVI  with
the Number of TB Cases

Figure 2 illustrates the lag effects of air pollutants
and NDVI  on  the  risk  of  TB  with  an  increase  in IQR,
with  reference  to  the  median  in  the  single-factor
models.  PM2.5 and  PM10 were  positively  correlated

 

Table 1. Characteristics of new TB cases in Shanghai,
2013–2018 (N = 39,579).

Characteristics N (%)

Age, median years (IQR) 42 (27, 60)

Age group (years)

0– 161 (0.41)

15– 32,643 (82.48)

> 65 6,775 (17.12)

Sex

Male 27,150 (68.60)

Female 12,429 (31.40)

Race

Han nationality 39,320 (99.35)

Ethnic minority 256 (0.65)

Unclear 3 (0.01)

Occupation

Labor worker 5,757 (14.55)

Farmer 1,622 (4.10)

Commercial service 1,799 (4.55)

Medical staff 230 (0.58)

Teacher and student 1,943 (4.91)

Office worker 1613 (4.08)

Retired 9,399 (23.75)

Unemployed 5,304 (13.40)

Unclear 3,524 (8.90)

Other 8,388 (21.19)

Household register

Migrant patients 17,022 (43.01)

Resident patients 22,301 (56.35)

Unclear 256 (0.65)

Severe case

No 32,248 (81.48)

Yes 7,331 (18.52)

TB history

New case 36,073 (91.14)

Retreated case 3,506 (8.86)

Patient source

Active screening 1,210 (3.06)

Passive screening 38,369 (96.94)

Pathogen result

Positive 18,704 (47.26)

Negative 19,468 (49.19)

Unknown 1,407 (3.55)

　　 Note. Abbreviations:  IQR,  interquartile  range;
TB, tuberculosis; N, number.
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with  TB  risk,  whereas  NO2 and  SO2 were  negatively
correlated. The cumulative risk of TB was associated
with  PM2.5 exposure  from  lag  0  to  17  weeks  (RR =
1.122, 95% CI: 1.004–1.253) to lag 0–19 weeks (RR =
1.166,  95% CI:  1.026–1.325).  PM10 exposure
increased  the  cumulative  risk  of  TB  from  lag  0–16
weeks (RR = 1.123, 95% CI: 1.001–1.259) to lag 0–18
weeks  (RR =  1.167,  95% CI:  1.028–1.324).  For  NO2,
the  negative  association  was  statistically  significant
from lag 0 week (RR = 0.983, 95% CI: 0.966–0.999) to
lag 0–1 week (RR = 0.968, 95% CI: 0.938–0.999). SO2
exposure  from  lag  0  weeks  (RR =  0.979,  95% CI:
0.959–0.999)  to  lag  0–2 weeks  (RR =  0.945,  95% CI:
0.894–0.999)  was  associated  with  decreased
cumulative  risk  of  TB.  Additionally,  the  cumulative-
lag  risks  of  CO,  O3, and  NDVI  on  TB  cases  were  not
statistically  significant  (Supplementary  Tables
S2–S4). 

Association  between  Meteorological  Factors  and
the Number of TB Cases

Figure 3 shows the lag  effects  of  meteorological
factors  on  the  risk  of  TB  cases  with  an  increase  in
IQR, with  reference  to  the  median  in  the  single-
factor models. Rainfall was positively associated with
TB  risk,  whereas  air  pressure  was  negatively

associated  with  it.  The  cumulative  risk  of  TB  was
linked  to  rainfall  exposure  from  lag  0  (RR =  1.023,
95% CI: 1.002–1.044) to lag 0–22 weeks (RR = 1.404,
95% CI:  1.076–1.833).  For  air  pressure,  a  significant
negative  association  was  observed  between  lag  0
(RR =  0.887,  95% CI:  0.824–0.955)  and  0–13  weeks
(RR =  0.645,  95% CI:  0.429–0.969).  There  were  no
significant  associations  between  temperature,
relative  humidity,  wind  speed,  heat  index,  solar
radiation,  and  TB  cases  in  cumulative  lag  times
(Supplementary Tables S5–S6). 

Subgroup  Analysis  of  the  Effects  of  Environmental
Factors

Figure  4 shows  the  lag  effects  of  PM2.5,  PM10,
NO2,  SO2,  air  pressure, and rainfall  on the risk of TB
at  specific  and  cumulative  lag  times  in  different  sex
subgroups.  In  the  single-factor  model,  TB
associations  with  PM2.5,  PM10,  and  air  pressure
exposure  were  significant  only  in  the  male  group.
The highest  cumulative RRs  of  TB appeared at  a  lag
of 0–19 weeks (RR = 1.193, 95% CI: 1.037–1.373) for
PM2.5 and at a lag of 0–18 weeks (RR = 1.199, 95% CI:
1.044–1.376) for PM10. The lowest cumulative RR for
air pressure was observed at a lag of 0–7 weeks (RR
=  0.576,  95% CI:  0.422–0.788).  Conversely,  we  only
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Figure 1. Spatial  KDE  of  Tuberculosis  Cases  in  Shanghai,  2013-2018.  A  colored  version  is  required  for
printing to ensure clarity. TB, tuberculosis; KDE, kernel density estimation.
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observed  statistically  significant  relationships
between  NO2,  SO2,  rainfall  exposure  and  TB  in
women.  In  women,  the cumulative RRs  peaked at  a
lag  of  0–8  weeks  (RR =  0.864,  95% CI:  0.747–0.998)
for  NO2;  0–11  weeks  (RR =  0.787,  95% CI:
0.641–0.966)  for  SO2;  and  0–22  weeks  (RR =  2.050,
95% CI:  1.390–3.024)  for  rainfall  (Supplementary
Tables S2–S6).

A stratified analysis according to age is shown in
Figure  5.  When  stratified  by  age,  the  relationships
between  PM2.5,  PM10,  NO2,  and  air  pressure
exposure  and  the  risk  of  TB  remained  statistically
significant only in the 15–65 years age group. In this
group,  the  cumulative RRs  peaked  at  a  lag  of  0–19
weeks (RR = 1.199, 95% CI: 1.046–1.373) for PM2.5, a
lag of 0–18 weeks (RR = 1.228, 95% CI: 1.074–1.405)
for  PM10,  a  lag  of  0–1  weeks  (RR =  0.966,  95% CI:
0.934–0.998) for  NO2,  and a lag of  0–7 weeks (RR =
0.580,  95% CI:  0.428–0.786)  for  air  pressure.  In
contrast,  in  the  aged >  65  years  group,  a  significant
increase  in  cumulative  TB  risk  was  observed  only
with  higher  rainfall  exposure,  reaching  a  peak  at  a

lag of 0–20 weeks (RR = 1.699, 95% CI: 1.071–2.697).
No  statistically  significant  association  with  SO2
exposure  was  observed  in  either  age  group
(Supplementary Tables S2–S6).

Figure  6 shows  the  lag  effects  of  environmental
factors  on  TB  risk,  stratified  by  household
registration  status.  Air  pressure  and  rainfall  were
significantly  associated  with  TB  risk  only  among  the
migrant population, with a peak effect occurring at a
lag  of  0–8 weeks  (RR =  0.459;  95% CI:  0.312–0.676)
for air pressure and 0–22 weeks (RR = 1.931, 95% CI:
1.374–2.713)  for  rainfall.  PM2.5 exposure,  however,
was  only  significantly  associated  with  TB  risk  in
resident  patients,  with  the  highest RR observed  at
0–19  weeks  (RR =  1.184,  95% CI:  1.014–1.382).  No
significant  associations  were  observed  between
PM10,  NO2,  or  SO2 in  either  group.  (Supplementary
Tables S2–6). 

The Interaction Effects of Environmental Factors

Figure 7 and Supplementary Table S7 illustrate
the  interactive  effects  of  air  pollutants,

 

Table 2. Distribution characteristics of weekly TB cases, air pollutants, meteorological factors, and NDVI in
Shanghai during 2013–2018

Characteristic]
Mean ± SD Min P25 Median P75 Max

TB cases 126.60 ± 24.00 21.00 116.00 129.00 143.00 176.00

Air pollutant

PM10 (μg/m3) 74.48 ± 29.10 28.12 53.61 69.57 87.27 249.04

PM2.5(μg/m3) 46.88 ± 21.35 11.68 33.08 43.44 56.40 188.60

SO2 (μg/m3) 18.88 ± 8.69 6.98 12.94 16.67 21.92 57.20

NO2 (μg/m3) 39.89 ± 12.97 13.91 30.98 38.05 46.94 86.58

CO (mg/m3) 0.85 ± 0.32 0.44 0.70 0.81 0.94 5.22

O3 (μg/m3) 102.13 ± 31.39 44.61 77.14 101.11 123.60 210.89

Meteorological factor

Temperature (°C) 17.40 ± 8.64 −0.84 9.93 18.17 24.33 34.74

Air pressure (kPa) 101.63 ± 0.84 100.12 100.85 101.64 102.33 103.40

Wind speed (m/s) 2.94 ± 0.60 1.74 2.51 2.85 3.29 5.10

Relative humidity (%) 75.15 ± 9.00 48.29 68.99 76.14 81.50 93.84

Heat index 67.90 ± 13.48 38.39 56.60 69.89 78.38 92.93

Solar radiation (MJ/m2) 87.85 ± 34.79 13.43 61.53 84.35 114.16 177.70

Rainfall (mm) 26.69 ± 30.27 0.00 4.72 17.27 38.00 212.12

NDVI 0.40 ± 0.09 0.20 0.32 0.39 0.48 0.56

　　Note. NDVI, normalized difference vegetation index; CO, carbon monoxide; O3, ozone; SO2, sulfur dioxide;
NO2, nitrogen dioxide; PM2.5, particulate matter < 2.5 μm in aerodynamic diameter; PM10, particulate matter <
10  μm  in  aerodynamic  diameter;  TB,  tuberculosis;  SD,  standard  deviation; P25,  25th  percentile; P75,  75th
percentile
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meteorological variables, and NDVI on the TB risk.
Significant  increases  in  cumulative  TB  risk  for
PM2.5 exposure  were  observed  at  low
temperatures  (RR =  1.728,  95% CI:  1.138–3.125)
and  high  air  pressure  levels  (RR =  1.807,  95% CI:
1.175–2.779).  Notably,  both  PM2.5 (RR =  1.605,
95% CI:  1.069–2.411)  and  PM10 (RR =  1.329,  95%
CI:  1.019–1.735)  exposure  posed  significant  TB
risks  at  low  NDVI  levels,  whereas  no  significant
associations  were  observed  at  medium  or  high
NDVI levels. Additionally, the association between
PM10 exposure and TB cases was significant within

the  median  centiles  of  wind  speed  strata  (RR =
1.260, 95% CI: 1.124–1.338). 

Sensitivity Analyses

The sensitivity analysis confirmed the robustness
of  the  findings.  The  results  remained  consistent
when  employing  different  maximum  lag  times  and
degrees  of  freedom  for  confounding  environmental
variables,  as  well  as  when  making  additional
adjustments  to  construct  multi-pollutant  and  multi-
meteorological  factor  models  (Supplementary
Figures S4–S9). 
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Figure 2. Effects  of  air  pollutants  and  NDVI  on  risk  of  TB  in  specific  and  cumulative  lag  times  in  single-
factor  models.  The  solid  line  represents  the  central  estimates  and  the  envelopes  represent  95%
confidence intervals.  A  colored version is  required for  printing  to  ensure  clarity.  CO,  carbon monoxide;
O3, ozone; SO2, sulfur dioxide; NO2, nitrogen dioxide; PM2.5, particulate matter ≤ 2.5 μm in aerodynamic
diameter;  PM10,  particulate  matter ≤ 10  μm  in  aerodynamic  diameter;  NDVI,  normalized  difference
vegetation index; TB, tuberculosis.
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DISCUSSION

In  this  study,  we  evaluated  the  independent
effects  of  meteorological  factors,  air  pollutants,  and
green  space  exposure  on  TB  incidence,  especially
PM2.5 and  PM10.  We  also  characterized  the
interaction  effects  by  analyzing  varied  exposure-
response  relationships  across  different  categories,
enriching  our  understanding  of  the  co-exposure
effects on TB cases. Our results indicated that PM2.5,
PM10, and rainfall were positively associated with TB

cases,  whereas  NO2,  SO2,  and  air  pressure  were
negatively associated. No significant association was
found  between  green  space  and  TB.  Furthermore,
low  temperatures  enhanced  the  association
between PM2.5 and TB cases. These findings highlight
the  need  for  coordinated  strategies  to  mitigate  the
impact of environmental factors on TB cases.

This  study  found  positive  correlations  between
PM2.5 and  PM10 exposure  and  TB  incidence.  Similar
associations have been reported in ecological studies
from  the  Carolinas  in  the  USA[64],  as  well  as  time-
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Figure 3. Effects of meteorological factors on the risk of TB in specific and cumulative lag times in single-
factor  models.The  solid  line  represents  the  central  estimates  and  the  envelopes  represent  95%
confidence intervals. A colored version is required for printing to ensure clarity. TB, tuberculosis.
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series studies in the Chinese cities of Lianyungang[10]

and  Fuyang[65],  which  all  indicated  that  elevated
concentrations  of  PM2.5 and  PM10 are  linked  to
higher  TB  incidence  rates.  However,  other  studies,
including cohort studies from Taiwan[66] and Seoul[67],
found  no  significant  association  between  short- or
long-term  exposure  to  PM2.5,  PM10 and  active  TB
risk.  These  discrepancies  may  be  partially  due  to
variations in pollution levels. For example, in studies
reporting  no  association,  the  median  PM10
concentrations  were  47.34  μg/m3 in  Taiwan[66] and

62.80  μg/m3 in  Seoul[67],  both  lower  than  the  85.43
μg/m3 in  Lianyungang[10].  Similarly,  Taiwan's  median
PM2.5 concentration  was  27.79  μg/m3[66],  compared
to  48.56  μg/m3 in  Lianyungang[10].  In  addition  to
pollution  levels,  other  factors,  such  as
meteorological  conditions,  industrialization,  and  the
presence of toxic substances adsorbed onto PM2.5 or
PM10 might  contribute  to  differences  in  exposure-
response  effects[35].  Subgroup  analyses  further
revealed  that  the  association  between  PM2.5 and
PM10 exposure  and  the  risk  of  pulmonary  TB  was
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Figure 4. Effects  of  air  pollutants  and meteorological  factors  on  risk  of  TB  in  different  sex  subgroups  in
single-factor  models.  The  solid  line  represents  the  central  estimates  and  the  envelopes  represent  95%
confidence intervals. A colored version is required for printing to ensure clarity. Abbreviations: SO2, sulfur
dioxide;  NO2,  nitrogen  dioxide;  PM2.5,  particulate  matter ≤ 2.5  μm  in  aerodynamic  diameter;  PM10,
particulate matter ≤ 10 μm in aerodynamic diameter; NDVI, normalized difference vegetation index; TB,
tuberculosis.
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significant  only  among  males;  this  could  be
attributed  to  higher  rates  of  smoking  and  alcohol
consumption,  which  suppress  cell-mediated
immunity  and  tumor  necrosis  factor-α  (TNF-α)
production, thus increasing vulnerability to TB[68,69].

Several  biological  mechanisms  have  been
proposed  to  explain  the  association  between  TB
cases and particulate matter exposure. Air pollutants
can  independently  exacerbate  airway  epithelial
damage,  leading  to  oxidative  stress  or  other  toxic
effects[70,71].  These  harmful  effects  are  particularly
pronounced  for  smaller  particles,  such  as  PM2.5,

which  can  penetrate  deep  into  the  alveolar  region
and impair alveolar macrophage activity[72]. Elevated
PM2.5 levels  increase  iron  availability,  which
facilitates  MTB  proliferation[73–75].  Furthermore,
exposure to PM2.5 has been shown to enhance MTB
colony-forming  units  in  alveolar  cells  and  disrupt
immune  responses,  including  the  production  of  key
inflammatory  cytokines  such  as  interferon-γ  and
TNF-α[76-78].  These  factors  create  a  favorable
environment for MTB invasion.

Our  study  found  no  significant  association
between O3 exposure and TB cases,  consistent  with
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Figure 5. Effects  of  air  pollutants  and meteorological  factors  on risk  of  TB in  different  age subgroups in
single-factor  models.  The  solid  line  represents  the  central  estimates  and  the  envelopes  represent  95%
confidence intervals. A colored version is required for printing to ensure clarity. SO2, sulfur dioxide; NO2,
nitrogen dioxide; PM2.5, particulate matter ≤2.5 μm in aerodynamic diameter; PM10, particulate matter ≤
10 μm in aerodynamic diameter; NDVI, normalized difference vegetation index; TB, tuberculosis.
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findings  from  Seoul,  South  Korea[67].  In  contrast,  a
USA  case-control  study[79] reported  a  negative
association,  whereas  a  time-series  analysis  in
Urumqi, China[80], found a positive correlation. These
studies  relied  on  O3 exposure  estimates  from  fixed
monitoring  stations,  which  may  not  accurately
reflect  individual  exposure  levels,  due  to  the
chemical  interactions  between  O3 and  NO  in  the
environment[81].  Therefore,  the  findings  should  be
interpreted with caution.

Our  study  identified  a  negative  correlation

between SO2 exposure and TB cases, consistent with
findings  from  time-series  studies  in  Ningbo[82],
Wuhan[83],  and  Hefei[84].  A  case-crossover  study  in
Madrid  also  reported  a  significant  association
between elevated SO2 concentrations and a reduced
likelihood of PTB hospitalization (OR = 0.92,  95% CI:
0.86–0.99, P = 0.029)[77]. The antimicrobial properties
of  SO2 might  explain  this  association.  SO2 can
penetrate  microbial  cell  membranes  and  disrupt
enzyme  and  protein  activity,  thereby  effectively
inhibiting  microbial  growth[85].  An  experimental
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Figure 6. Effects of air pollutants and meteorological factors on risk of TB in different household register
subgroups  in  single-factor  models.  The  solid  line  represents  the  central  estimates  and  the  envelopes
represent 95% confidence intervals. A colored version is required for printing to ensure clarity. SO2, sulfur
dioxide;  NO2,  nitrogen  dioxide;  PM2.5,  particulate  matter ≤ 2.5  μm  in  aerodynamic  diameter;  PM10,
particulate matter ≤ 10 μm in aerodynamic diameter; NDVI, normalized difference vegetation index; TB,
tuberculosis.
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study  demonstrated  that  inhalation  of  14  mg/m³  of
SO₂  increases  levels  of  the  pro-inflammatory
cytokines  TNF-α  and  interleukin-6  in  murine  lung
tissue[86]. These cytokines play a crucial role in host’s
defense  against  MTB  by  regulating  granuloma
formation[87].

Additionally, we observed a negative association
between  NO2 exposure  and  TB  cases,  which  aligns
with an experimental  study demonstrating that NO₂
exhibits  antimycobacterial  activity[88].  In  contrast,  a
meta-analysis  by  Xiang  et  al.[9] indicated  that  NO2
exposure  (per  1  ppb  increase; RR =  1.010)  was
associated  with  an  increased  risk  of  TB.  These
discrepancies  may  be  due  to  variations  in
demographic  factors,  population  susceptibility,
geographic  and  climatic  differences,  methods  of
exposure  quantification,  and  modeling  choices[6].
Further  research  with  larger  sample  sizes  and  more
sensitive  methodologies  is  essential  to  accurately
assess  the  relationship  between  air  pollutants  and
TB.

In  our  study,  rainfall  was  positively  correlated
with  TB,  consistent  with  the  findings  of  a  previous
geographically  weighted  regression  analysis[89].
Rainfall  reduces  outdoor  activity  and  exposure  to
sunlight,  thereby  decreasing  ultraviolet  (UV)
radiation,  which  inhibits  inflammation,  enhances
antimicrobial  activity,  and  regulates  vitamin  D

production[90].  Reduced  UV  exposure  may  weaken
immune function and increase TB risk[90]. A subgroup
analysis  revealed  that  rainfall  exposure  was
significantly  associated  with  TB  risk  only  in  migrant
populations.  Living,  working,  and  social  interactions
often occur  in  densely  populated environments  and
may  facilitate  TB  transmission[91].  Additionally,
migrants  may  face  greater  barriers  to  accessing
healthcare  and  social  security,  which  further
contributes  to  their  heightened  vulnerability  to
TB[92].

Our  findings  also  indicated  that  higher  air
pressure was associated with a decreased risk of TB,
which is  consistent with the results of  a generalized
linear  mixed  model  by  Guo  et  al.[93] at  the  national
level, in China. However, another study conducted in
Lanzhou using a generalized additive model found a
positive  association  between  air  pressure  and  TB
incidence, with a lag of 4–6 days[94]. This discrepancy
may  be  explained  by  differences  in  regional
environmental  factors  such  as  temperature,
humidity,  and  specific  temporal  lags.  We
hypothesized  that  high  air  pressure  may  influence
atmospheric  stability,  potentially  reducing  the
dispersion  of  air  pollutants  and  pathogens;  this,  in
turn, reduces the chances of human exposure to and
infection  with  MTB.  However,  the  mechanisms
underlying this relationship remain unclear, and may
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Figure 7. Interaction analysis between air pollutants, meteorological factors, and NDVI on risk of TB. (A)
The cumulative-lag RR of 10 ug/m3 increase in PM2.5 for TB cases stratified by meteorological factors and
NDVI  levels.  (B)  The  cumulative-lag RR of  10  μg/m3 increase  in  PM10 for  TB  cases  stratified  by
meteorological factors and NDVI levels. (C) The cumulative-lag RR of 10 Pa increase in air pressure for TB
cases  stratified  by  air  pollutants.  The  points  indicate  central  estimates,  while  the  vertical  lines  indicate
95% CI.  A  colored  version  is  required  for  printing  to  ensure  clarity.  Abbreviations:  NDVI,  normalized
difference vegetation index; CO, carbon monoxide; O3, ozone; SO2, sulfur dioxide; NO2, nitrogen dioxide;
PM2.5,  particulate  matter ≤ 2.5  μm  in  aerodynamic  diameter;  PM10,  particulate  matter ≤ 10  μm  in
aerodynamic diameter; TB, tuberculosis; RR, relative risk; CI, confidence interval.
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involve  complex  interactions  with  other
environmental  factors.  Further  studies  are  required
to elucidate these mechanisms.

Regrettably,  we  found  no  significant  correlation
for  cumulative  lagged  risk,  potentially  because
longer  lag  periods  are  needed  to  fully  capture  the
cumulative impact of  NDVI on TB risk.  Furthermore,
the absence of  data on the quality  or  type of  green
spaces,  as well  as  their  distribution and accessibility
in  different  parts  of  Shanghai,  limited  our  ability  to
assess their potential influence on the results[95,96]. A
nationwide  modeling  study  in  China  reported  that
NDVI  could  mitigate  the  impact  of  air  pollutants  on
TB incidence[97]. Exposure to green space may reduce
ambient  respirable  particulate  matter  through  the
deposition  effect  of  vegetation  leaves[98] and  alter
the  diffusion  trajectory  and  speed  of  these
particulates[99],  thereby  influencing  MTB
transmission  and  decreasing  TB  incidence.
Additionally,  greenery  can  change  the  chemical
composition  of  particles  by  removing  polycyclic
aromatic  hydrocarbons  and  heavy  metals,  thereby
altering the relationship between particulate matter
and  TB  incidence[100].  Currently,  there  is  a  lack  of
research on the independent effects  of  green space
on  TB  incidence  of  TB.  Further  studies  are  required
to  provide  data-driven  recommendations  for  the
utilization of  green space to enhance TB prevention
and control in China.

The  interaction  analysis  revealed  interesting
interactive  effects  of  environmental  factors  on  TB
cases,  providing  comprehensive  insights  into  the
complex  interplay  between  air  pollution,  weather
conditions,  green  space,  and  TB  cases  in  Shanghai.
Specifically,  low  temperatures  combined  with  high
PM2.5 concentrations  may  jointly  promote  TB  risk.
Similarly, Huang et al.[63] reported a downward trend
in  the  PM2.5-TB  association  with  increasing
temperature  levels,  while  another  study  found  that
high  PM2.5 concentrations  reinforce  the  association
between  temperature  and  TB  hospitalizations,
particularly in cold environments[101]. This interaction
may be explained by the cold-induced nasal mucosal
responses  and  epithelial  desquamation,  which
trigger  inflammation  and  accelerate  latent  TB
activation[60,102].  Low  temperatures  are  often
associated  with  reduced  UV  radiation  exposure,
leading  to  vitamin  D  deficiency.  This  deficiency
impairs immune function and increases vulnerability
to  the  adverse  effects  of  air  pollution,  further
heightening  susceptibility  to  TB  in  individuals  with
latent  infections[103,104].  Furthermore,  experimental
studies  have  demonstrated  that  at  low

temperatures,  both  metabolism  and  minute
ventilation  are  elevated,  which  increase  particulate
matter uptake[105]. These factors, combined with the
ability  of  PM2.5 to  carry  MTB  and  penetrate  deeply
into  the  lungs,  may  synergistically  promote  TB
reactivation  or  new  infections.  Additionally,
moderate  wind  speeds  may  enhance  the  spread  of
both  particulate  matter  and  MTB,  intensifying  the
impact of PM10 on TB[62].

This  study  has  several  key  public  health
implications.  First,  to  reduce  TB  incidence  and
improve  overall  health,  stringent  air  quality
standards  targeting  PM2.5 and  PM10 are  crucial,
especially  in  high-pollution  areas,  along  with
allocating  medical  resources  to  these  regions.
Second,  during  periods  of  elevated  PM2.5 and  PM10
concentrations,  particularly  under  haze  conditions,
enhancing  TB  screening  among  symptomatic
individuals  and  high-risk  populations  (e.g.,  those
with  HIV  or  diabetes)  within  specific  lag  periods
could help mitigate the impact of air pollution on TB.
Additionally,  during  cold  seasons,  measures  such  as
wearing  masks  in  crowded  areas  should  be
implemented  to  mitigate  the  combined  effects  of
low  temperatures  and  high  PM2.5 levels  on  TB  risk.
Finally,  public  education  campaigns  can  raise
awareness of the health impacts of air pollution and
weather,  encouraging  preventive  actions  such  as
reducing outdoor activities during high pollution and
cold weather.

This  study  had  several  limitations.  First,
ecological  studies  are  inherently  constrained  in
establishing  causality,  offering  only  correlational
evidence,  rather  than  confirming  a  direct
relationship  between  environmental  factors  and  TB
cases.  Additionally,  we  used  NDVI  as  the  sole
indicator  of  greenness,  without  considering  the
quality,  type  (e.g.,  parks  vs.  tree-lined  streets),  or
accessibility  of  green spaces,  which may vary across
Shanghai and influence health outcomes[95,96]. Future
studies  should  incorporate  these  factors  to  better
understand  the  relationship  between  green  space
and  TB  incidence.  Furthermore,  owing  to  data
limitations,  individual-level  factors  such  as
socioeconomic  status,  smoking,  and  healthcare-
seeking  behaviors  could  not  be  accounted  for,
restricting  our  ability  to  assess  their  modifying
effects.  Finally,  relying  on  municipal-level
environmental  exposure  data  as  a  proxy  for
individual  exposure  may  result  in  misclassifications
that  could  affect  the accuracy of  the results.  Future
research  should  focus  on  cohort  studies  based  on
individual-level  data  and  incorporate  more  precise
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exposure and covariate information to provide more
reliable  findings  and  strengthen  the  conclusions  of
this study. 

CONCLUSIONS

Our  study  elucidated  the  independent  and
interactive  effects  of  air  pollutants,  meteorological
variables, and greenspace exposure on TB incidence
in  Shanghai,  China.  Specifically,  PM2.5,  PM10,  and
rainfall  were  positively  associated  with  TB,  whereas
NO2,  SO2,  and  air  pressure  were  negatively
correlated. Additionally, low temperatures enhanced
the  association  between  PM2.5 and  TB  cases.  No
significant  association  was  observed  between
greenspace  exposure  and  TB  cases.  Future  research
utilizing  larger-scale  TB  case  studies  and  advanced
epidemiological methods, such as prospective cohort
or  case-control  studies,  is  essential  to  elucidate  the
impact  of  environmental  exposure  on  TB  cases.
These findings contribute to a deeper understanding
of the TB risk factors and provide valuable evidence
for  public  health  policymakers  to  guide  TB
prevention, control, and air quality improvement. 
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