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Abstract

Objective To develop a prognostic prediction model for early-stage triple-negative breast cancer
(TNBC) using H&E-stained pathological images and to investigate its underlying biological
interpretability.

Methods A deep learning model was trained on 340 WSIs and externally validated using 81 TCGA
cases. Image-derived features extracted through convolutional neural networks were integrated with
clinicopathological variables. Model performance was assessed using ROC curve analysis, and
interpretability was evaluated by correlating image features with mRNA-seq data and characteristics of
the immune microenvironment.

Results The model achieved AUCs of 0.86 and 0.75 in the training and validation cohorts, respectively.
Analysis using HoVer-Net indicated that lymphocyte abundance was associated with recurrence risk.
Texture-related features showed significant correlations with immune cell infiltration and prognostic
gene expression profiles.

Conclusion This study demonstrates that deep learning can enable accurate prognostic prediction in
early-stage TNBC, with interpretable image features that reflect the tumor immune microenvironment
and gene expression profiles.
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INTRODUCTION

ccording to GLOBOCAN 2022, breast
cancer remains the most prevalent
malignancy among women worldwide,

with an estimated 2.31 million new cases and
670,000 deaths reported in 2022. Triple-negative

“These authors contributed equally to this work.

breast cancer (TNBC), characterized by the absence
of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2
(HER2) expression, accounts for approximately
10%-20% of all breast cancer cases globally,
representing more than 230,000 new diagnoses each
year. In China alone, approximately 357,200 new

*Correspondence should be addressed to Peng Yuan, M.D., Tel: +86-10-87787245, Email: yuanpengyp01@163.com


https://doi.org/10.3967/bes2025.119
mailto:yuanpengyp01@163.com

Interpretable Al prognosis model for early TNBC

233

breast cancer cases and 75,000 deaths were
reported in 2022, contributing to 15.5% of the global
incidence and 11.2% of global mortality“’zl.
Compared with hormone receptor-positive or HER2-
positive subtypes, TNBC exhibits a more aggressive
biological phenotype and is associated with poorer
clinical outcomes, with over 20% of patients
experiencing disease recurrence within 3-5 years
after diagnosisB]. Despite numerous investigations
exploring prognostic determinants—spanning
clinicopathological, genomic, transcriptomic, and
tumor microenvironmental factors'*'—traditional
indicators such as tumor size, axillary lymph node
status, and age at diagnosis remain suboptimal for
accurately stratifying recurrence risk®®. Meanwhile,
the widespread clinical implementation of
comprehensive molecular profiling is constrained by
high cost, extended turnaround time, and technical
complexity.

Hematoxylin and eosin (H&E) staining remains a
cornerstone of pathological assessment due to its
simplicity, cost-effectiveness, and ability to capture
critical morphological features, such as tumor
architecture, cellular composition, and spatial
distribution. Recent studies have demonstrated that
subtle variations in cell morphology visible in H&E-
stained histopathological images can reflect
underlying molecular alterations and are strongly
associated with the prognosis of multiple
malignanciesm]. The rapid development of deep
learning has transformed image analysis, particularly
within medical imaging and digital pathology.
Applying deep learning algorithms to H&E-stained
whole-slide images (WSIs) facilitates the extraction
of  high-dimensional  morphological patterns
associated with disease recurrence and metastasis
potential. For instance, Zhang et al®. developed a
prognostic model (PathoSig) based on H&E digital
slides and validated its predictive performance in
independent cohorts. Similarly, Saillard et al™,
constructed deep learning models  that
outperformed  conventional clinicopathological
variables in predicting overall survival among
patients with liver cancer. Collectively, these findings
highlight the growing potential of integrating digital
pathology with artificial intelligence for patient risk
stratification. However, research focusing on early-
stage TNBC remains limited.

A major challenge to the clinical translation of
deep learning-based models lies in their limited
interpretability. Due to the complex, nonlinear
structure of neural networks, elucidating how
parameters such as weights, biases, and inter-layer

interactions influence the model output is often
challenging. As a result, these models are frequently
regarded as “black boxes”™ ™ In the medical field,
where transparency and decision accountability are
paramount, model interpretability is especially
critical. Current strategies to enhance interpretability
generally fall into two major categories™™®: (1)
direct visualization of model attention using
techniques such as class activation maps (CAM)[”];
and (2) feature engineering approaches that
transform image data into structured quantitative
features—similar to those used in radiomics or
pathomics”g]—followed by correlation analyses
employing descriptors such as shape, texture, and
first-order statistical metrics!™*?". However, these
approaches often compromise the predictive
performance of the model. Moreover, few studies
have explored interpretable, deep learning-based
prognostic modeling using histopathological images
in TNBC.

In this study, we analyzed 340 postoperative
H&E-stained pathological sections from 318 TNBC
patients with complete recurrence and metastasis
follow-up data obtained from the Cancer Hospital,
Chinese Academy of Medical Sciences (2009-2017).
A deep learning framework was developed to extract
image-derived features from WSIs and integrate
them with clinical variables for recurrence and
metastasis risk prediction. Independent external
validation was performed using WSIs from 81
patients with TNBC in the Cancer Genome Atlas
(TCGA) cohort. Furthermore, we conducted a
differential analysis of cellular composition,
extracted texture-related features from WSIs, and
examined their associations with the tumor immune
microenvironment and gene expression profiles.
Through interpretability analysis of the model, we
aimed to explore the biological mechanisms
captured in histopathological images that may
contribute to early TNBC recurrence and metastasis.

MATERIALS AND METHODS

Data Collection of TNBC Patients

The clinical data of patients with TNBC admitted
to the Cancer Hospital, Chinese Academy of Medical
Sciences, between January 2009 and December 2017
were retrospectively collected. Patients were
included if they met all of the following criteria: (1)
Female patients who underwent breast-conserving
surgery or modified radical mastectomy for the first
time, with available H&E-stained pathological
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sections of the primary tumor; (2) Histologically
confirmed primary invasive breast cancer with a
postoperative pathological stage of I-lll, according to
the AJCC 8th edition; (3) Immunohistochemistry
(IHC) results showing ER-, PR-, and HER2 1+ or 2+
with non-amplified HER2 gene status confirmed by
fluorescence in situ hybridization (FISH); and (4)
Availability of complete clinicopathological data,
including age, date of surgery, pathological findings,
treatment details, and recurrence/metastasis status.
The exclusion criteria were as follows: (1) presence
of other malignant tumors; (2) diagnosis of bilateral
breast cancer; (3) low-quality whole-slide images
(WSIs); and (4) absence of prognostic follow-up data.
In total, 318 patients with 340 eligible WSIs were
included in the training cohort. Using the same
inclusion and exclusion criteria, an independent
external validation cohort was established from 81
early-stage TNBC patients in the TCGA database
(https://portal.gdc.cancer.gov/repository), which
included postoperative H&E-stained WSils,
corresponding clinicopathological data, and mRNA
sequencing (mMRNA-seq) profiles. All datasets were
standardized to ensure consistency and
comparability across cohorts. The patient enrollment
flow chart is presented in Figure 1.

Image Preprocessing

A standardized workflow was implemented for
pathological image preprocessing. Two senior
pathologists independently conducted quality
control of WSiIs, excluding slides with tissue overlap
> 5% or tumor area < 10%. Tumor regions of interest
(ROIs) were manually annotated under double-blind
conditions using ASAP (v1.9), and all annotations
were verified by a third expert pathologist. To assess

420 triple-negative breast cancer
patients from the cancer hospital,
chinese academy of medical sciences

inter-observer consistency, 20 WSIs were randomly
selected, and the ROIs delineated by both
pathologists (Supplementary Figure S1) were
compared using a Python 3.8 script (libraries:
shapely 2.0.1, scikit-image 0.22.0, numpy 1.24.4,
Ixml 4.9.3). Dice similarity coefficients, calculated
from merged and rasterized annotations, ranged
from 0.84 to 0.98 (Supplementary Table S1),
demonstrating excellent annotation consistency.
Given the ultra-high resolution of WSIs (averaging
240 + 80 million pixels per slide), we developed a
parallel image-processing pipeline using OpenSlide
(v3.4.1), comprising the following steps: (1)
Extraction of 512x512 pixel non-overlapping image
patches at 20x magnification (256-pixel stride); (2)
Application of Gaussian denoising and Canny edge
detection using OpenCV (v4.6.0); (3) Automatic
removal of image patches with > 25% blank areas
(determined by HSV color-space thresholding).
Finally, Macenko stain normalization (parameters a
= 0.5, B = 0.15) was applied to standardize H&E
staining characteristics and ensure uniformity across
inputs for model training.

Deep Learning Model Construction Strategy

We adopted ResNet-18, a convolutional neural
network (CNN) with residual modules, as the
backbone of our prognostic prediction model.
Traditional CNNs consist of convolutional filters,
pooling layers, and fully connected layers. In
contrast, ResNet-18 introduces skip connections that
enable direct information flow across residual
blocks, improving gradient propagation and
mitigating the degradation and vanishing gradient
issues commonly encountered with deeper
networks. The model was implemented using the

116 patients with early-stage
triple-negative breast cancer
from TCGA

102 patients were excluded:

Missing prognostic information: N = 32
Suboptimal quality of WSIs: N = 10

Bilateral breast cancer patients: N =3

Absence of postoperative pathological sections: N = 45|

Advanced-stage patients without treatment: N = 12

35 patients were excluded:
Absence of WSIs: N =15
Missing prognostic information: N = 14
Missing pathological stage: N =5
Suboptimal quality of WSI images: N =1

318 patients were included in
the study analysis (Training
cohort)

81 patients were included in
the study analysis (Validation
cohort)

Figure 1. Flowchart of patient selection for the training cohort and external validation cohort.
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PyTorch library.

Transfer Learning Based on ResNet-18  The
network was initialized with pre-trained weights
from the ImageNet dataset. Fine-tuning of all layers
was performed via backpropagation, with the cross-
entropy loss function defined between the predicted
probabilities and ground-truth labels. Stochastic
Gradient Descent (SGD) was used for optimization,
with a learning rate of 0.001, momentum of 0.9, and
learning rate decay applied every seven epochs using
a decay factor (gamma) of 0.1. Training was
conducted for 20 epochs.

Five-Fold Cross-Validation = Model training and
internal validation were performed using five-fold
cross-validation (Figure 2b). Each WSI was divided
into non-overlapping image patches, which inherited
patient-level labels (i.e., recurrence or metastasis).
The patches were randomly split into five equally
sized subsets with a balanced label distribution. In
each fold, one subset was used for validation, and
the remaining subsets were used for training. To
address label imbalance, downsampling was applied
to equalize the number of patches per class in the
training set. The prediction scores for each patch in
the validation set were obtained, and patient-level
predictions were computed by averaging the scores
of all patches from the same patient. One model was
saved per fold, and the best-performing model was
selected based on the validation accuracy.
Independent External Validation  The optimal

341 diagnostic whole slide
images and clinical datas in the
hostpital cohort

A
[ 81 whole slide images and ’

clinical datas in the cancer
genome atlascohort

Whole slide images

5 Validation set
prediction scores

— B S
5-Fold cross-training Resnetls |
Avreage |Find A
i Re-train

Optimal hyperparameters -« -« . oooeooii

Annotated cancer areas

hyperparameters identified during cross-validation
were used to retrain the final model on the entire
training cohort. This finalized model was then
applied to the TCGA cohort for independent external
validation.

Multimodal Feature Fusion Strategy Following the
preprocessing of clinical data, a random forest (RF)
algorithm was applied to compute the Gini
importance of each feature in the training set.
Features with importance scores greater than 0.01
were selected, resulting in 24 key clinicopathological
variables, such as age, pathological stage,
histological grade, adjuvant chemotherapy, and
adjuvant radiotherapy. These variables were further
evaluated using the Wilcoxon rank-sum test and T-
test to determine significant differences between
the recurrence/metastasis and non-
recurrence/metastasis groups. Features showing
statistically significant differences (P < 0.05) were
retained for integration into the final prognostic
model. For multimodal feature fusion, this study
employed Multimodal Compact Bilinear Pooling
(MCB). First, high-dimensional representations of
image patches were extracted using a pretrained
neural network, while clinical variables were
encoded with a multilayer perceptron (MLP). The
Count Sketch method was then used for
approximation. After dimensionality reduction, both
feature vectors were projected into a higher-

dimensional space, where efficient fusion was
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Figure 2. Flowchart of the prognostic prediction model construction based on a deep learning framework.
(A) Image data collection and preprocessing; (B) Model training and prediction workflow.
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achieved through element-wise multiplication in a
Fast Fourier Transform (FFT) space. This specific
approach involves transforming features into the
frequency domain, computing inner products in this
domain, and then returning the results to the
temporal domain using inverse FFT. This method
offers three main advantages: (1) Reduced
computational complexity through implicit outer-
product operations, resulting in faster computation;
(2) Complete preservation of cross-modal feature
interactions; and (3) An end-to-end architecture that
supports gradient backpropagation optimization.

Visualization Analysis

We applied two visualization approaches to
interpret the neural network model. First, during
model training, the network assigned a continuous
risk score to each image patch, reflecting its
contribution to the prognostic prediction. These
scores were then mapped to color values using
Gradient-weighted Class Activation Mapping (Grad-
CAM), following a linear mapping protocol:
prognostic relevance (ranging from 0 to 1)
corresponded to RGB color gradients. Second, to
explore cell-level features, we employed the HoVer-
Net model® to segment and classify individual cells
within the tumor regions. The nuclear segmentation
process involved two key steps: (1) the pixel
prediction branch identified nuclear pixels, and (2)
the distance map prediction branch generated
horizontal and vertical distance maps to precisely
delineate adjacent or overlapping nuclear pixels. This
integrated approach successfully classified five
distinct nuclear cell types: epithelial cells,
lymphocytes, tumor cells, stromal cells, and necrotic
cells. By quantifying cellular composition and
performing differential analysis, we revealed that
intratumoral heterogeneity may be associated with
patient prognosis.

Extraction of Image Texture Features

For each preprocessed histopathological image
patch, we applied a two-dimensional wavelet
transform and wavelet packet transform (2D-WPT),
resulting in four 256x256 pixel sub-images: the high-
frequency noise sub-image (High—High, HH), the
vertical detail sub-image (Low-High, LH), the
horizontal detail sub-image (High—Low, HL), and the
approximation sub-image (Low—Low, LL). We then
computed the overall detail sub-image (LHL) and
quantized both the approximation (LL) and detail
(LHL) sub-images to 16 gray levels. Subsequently, we
extracted 11 texture features based on the wavelet

multi-sub-band co-occurrence matrix (WMCM)®,
These features included: Small Gray-Level and Small
Detail Advantage (SGSDA), Small Gray-Level and Big
Detail Advantage (SGBDA), Gray Level Average (GLA),
Detail Level Average (DLA), Gray Level Mean Square
Error (GLMSE), Detail Level Mean Square Error
(DLMSE), Correlation, Regulation, Contrast, Inverse
Difference Moment (IDM), and Entropy.

Differential Analysis of the Immune

Microenvironment and Gene Expression

Raw RNA-seq data (including FPKM and UQ-
normalized expression values) and matched clinical
annotation data were obtained from the TCGA
official data portal (https://portal.gdc.cancer.gov/).
Only patients with complete clinical staging and
follow-up survival data were included.

Differential  Expression  Analysis This  was
performed using DESeq2 (v1.38.3) following this
workflow: (1) Expression Normalization: Library size
correction was conducted based on the negative
binomial distribution model; and (2) Differentially
Expressed Gene (DEG) Screening: The significance
threshold was set at an FDR-adjusted P-value (padj)
< 0.05, with an absolute log, fold change (|log, FC|)
> 1. Multiple testing correction was applied using the
Benjamini-Hochberg method.

Functional Enrichment Analysis This  was
performed on the identified DEGs using the
following steps: (1) GO Enrichment: Conducted using
the clusterProfiler package (v4.0); (2) Background
Gene Set: Protein-coding genes annotated in the
human genome (Ensembl GRCh38.p13); (3)
Significance Threshold: A Benjamini-Hochberg-
corrected g-value < 0.05 was used; and (4)
Visualization: The top 10 significantly enriched
pathways and their core regulatory gene networks
were visualized using the enrichplot package via
cnetplot.

Immune Microenvironment Profiling  This was
performed using the CIBERSORTx platform
(https://cibersortx.stanford.edu/) with the following
analytical pipeline: (1) Reference Signature Matrix:
The LM22 signature matrix (containing 22 immune
cell subtypes) was employed as the reference
profile; (2) Quality Control: The algorithm
automatically screens and preprocesses the gene
expression matrix based on data quality and
characteristics, effectively removing noise and
outliers that could compromise result accuracy. In
addition, we implemented stringent quality control
measures during preprocessing, including the
removal of low-expression genes and correction for
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batch effects. Only high-confidence samples with
deconvolution P-values < 0.01 were retained for
downstream analyses, thereby minimizing the need
for additional filtering; (3) Immune cell estimation: In
this study, we employed the CIBERSORT algorithm
with its default setting of 1,000 permutations to
estimate the composition of tumor-infiltrating
immune cells. This iteration number strikes a well-
established balance between computational
efficiency and result accuracy. (4) Inter-group
Comparison: Statistical differences in immune cell
infiltration proportions between subgroups were
assessed using the non-parametric Wilcoxon rank-
sum test. To validate the immune cell composition
estimates, we also employed the xCell algorithm as
an independent approach, enhancing the robustness
and reliability of our findings. Immune cell
enrichment analysis was performed using the xCell
platform (http://xcell.ucsf.edu/). The analytical
pipeline consisted of four key components: (1) Cell
Type Signature Database: The reference signatures
incorporated 10,808 curated gene markers from 64
human cell types, including 36 immune cell subtypes,
14 stromal cell types, and 14 hematopoietic
progenitors. These signatures were integrated from
the FANTOMS5, ENCODE, and Blueprint Epigenome
projects, with cross-validation via RNA-seq
compendia; (2) Preprocessing and Quality Control:
Gene expression matrices underwent Low-
expression filtering: Genes with log2(CPM) < 1 in >
90% samples were excluded; (3) Enrichment Score
Calculation: Cell type abundance was quantified
using the ssGSEA implementation, with rank-
normalized gene expression values transformed into
enrichment scores; Spillover compensation: Built-in
deconvolution correction was applied for lineage-
similar cell types; Output normalization: Raw scores
were converted to 0-1 scaled indices via platform-
defined transformation. (4) Statistical Comparison:
Differential enrichment between recurrence and
non-recurrence groups was assessed using the
Wilcoxon rank-sum test, with Benjamini-Hochberg
FDR correction applied.

Additional Statistical Analyses

Statistical analyses were conducted using SPSS
version 27.0 and R version 4.2.1. The distribution of
continuous variables was assessed using the
Shapiro—-Wilk test. Variables with a normal
distribution were expressed as mean * standard
deviation (SD), while non-normally distributed
variables were reported as median (IQR). Categorical
variables are summarized as frequencies and

percentages. Between-group comparisons were
performed based on data type and distribution.
Normally distributed variables with homogeneous
variances were compared using the independent
samples t-test, whereas the Mann-Whitney U test
was applied to non-normally distributed variables.
The performance of the prediction model was
evaluated by calculating the AUC. Pearson’s
correlation analysis was used to assess linear
relationships between variables. P-value < 0.05 was
considered statistically significant.

RESULT

Prediction of Recurrence and Metastasis in Early-
Stage TNBC Based on Pathological Images

We used 340 WSIs from 318 patients with early-
stage TNBC treated at the Cancer Hospital, Chinese
Academy of Medical Sciences, as the training cohort.
Among these, 118 WSIs were from patients with
recurrence or metastasis, while 222 were from
patients without recurrence or metastasis. To
evaluate the model’s robustness, we performed
independent external validation using 81 WSIs from
the TCGA cohort, which included eight cases with
recurrence or metastasis and 73 without. The deep
learning-based CNN model achieved an AUC of 0.805
in the training cohort through five-fold cross-
validation (Figure 3a). The model’s accuracy,
precision, recall, and F1l-score were 0.71, 0.56, 0.58,
and 0.54, respectively. In the external TCGA
validation cohort, the model achieved an AUC of
0.858  (Figure  3b), demonstrating strong
generalization capability. HER2-positive breast
cancer is associated with a higher risk of recurrence.
To further validate our prognostic model, we applied
it to 83 early-stage HER2-positive patients at the
Cancer Hospital, Chinese Academy of Medical
Sciences (19 with recurrence and 64 without
recurrence). The inclusion criteria and WSI
processing pipeline were consistent with those used
for the TNBC cohort. Despite not performing
subtype-specific parameter tuning, the model
achieved an AUC of 0.73 (Supplementary Figure S2),
highlighting its generalizability.

Based on the model predictions, patients
classified as having recurrence or metastasis were
defined as the high-risk group, while those predicted
to be non-recurrent were categorized as the low-risk
group. Survival analyses were performed for overall
survival (0S) and disease-free survival (DFS)
according to the model-predicted risk categories
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(Figure 3C, D). The results showed statistically
significant differences between the groups, with the
model-predicted low-risk group demonstrating
superior outcomes for both OS and DFS, further
validating the predictive accuracy of the model.

Integration of Deep
Clinicopathological Features
Performance and Interpretability

learning and
Enhances Model

The clinical data of the 318 patients were
analyzed, and their baseline characteristics are
summarized in Table 1. Five clinicopathological
features (age, number of metastatic axillary lymph
nodes (ALNs), pT stage, pN stage, and TNM stage)
showed significant differences (P < 0.05) between
the recurrence or metastasis (ROM) and non-
recurrence or metastasis (nROM) groups. These
features were used to construct a prognostic model
based solely on clinicopathological data using logistic
regression (LR), support vector machine (SVM), k-
nearest neighbors (KNN), and other machine
learning algorithms. The model achieved the highest
AUCs of 0.669 and 0.699 in the training and external
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validation cohorts, respectively (Supplementary
Figure S3), both of which were inferior to those of
the deep learning-based model using H&E-stained
WSls.

To further improve the performance and
interpretability of the prediction model, we
incorporated clinical data to enhance decision-
making accuracy. We then used MCB to linearly fuse
the deep learning features extracted from
pathological images with the five selected
clinicopathological features. The resulting model,
trained with five-fold cross-validation, achieved an
AUC of 0.86 (Figure 4A), demonstrating a significant
improvement over the image-only model.
Additionally, the accuracy, precision, recall, and F1-
score were 0.806, 0.702, 0.690, and 0.693,
respectively, substantially higher than those
obtained without clinical data integration. These
findings indicate that including clinicopathological
information effectively enhances model
performance and supports more accurate
predictions. Furthermore, model interpretability was
improved by incorporating clinical variables. External
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Figure 3. Prognostic prediction results based on pathological images. (A) Performance of the prediction
model in the training cohort; (B) Performance of the prediction model in the external validation cohort;
(C) Kaplan—Meier (KM) survival curves for OS in different risk groups; (D) Kaplan—Meier (KM) survival

curves for DFS in different risk groups.
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Table 1. Baseline characteristics of enrolled patients

ROM (n = 106) % nROM (n = 212) % P
Age (SD) 48.7 (10.3) 51.5(9.8) 0.019
Menopausal status
Pre- 61 57.5 98 46.2 0.057
Post- 45 42.5 114 53.8
TNM stage
Stage | 21 19.8 91 42.9 <0.001
Stage Il 50 47.2 102 48.1
Stage IlI 35 33.0 19 9.0
pT stage <0.001
T1 37 34.9 114 53.8
T2 64 60.4 96 453
T3 3 2.8 2 0.9
T4 2 1.9 0 0
pN stage <0.001
NO 47 443 150 70.8
N1 25 23.6 43 20.3
N2 16 15.1 13 6.1
N3 18 17.0 6 2.8
ALN metastasis number (IQR) 1(7) 0(1) <0.001
Surgery history 0.266
Radical surgery 52 49.1 118 55.7
Breast con- Serving 54 50.9 94 44.3
Tumor grade
Grade 1 3 2.8 4 1.9 0.057
Grade 2 35 33.1 44 20.8
Grade 3 63 59.4 149 70.3
Unknown 5 4.7 15 7.0
Adjuvant chemotherapy 0.056
A 2 1.9 3 1.4
T 0 0.0 14 6.7
A+T 63 59.4 129 60.8
T+P 33 31.1 59 27.8
Others 8 7.6 7 33
Adjuvant radiation 0.341
Yes 57 53.8 102 48.1
No 49 46.2 110 51.9

Note. ROM, recurrence or metastasis; nROM, non-recurrence or metastasis; pT stage, pathological T
stage; pN stage, pathological N stage; ALN, Axillary lymph nodes; A, Anthracyclines; T, Taxanes; P, Platinum
drugs
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validation using the TCGA dataset yielded an AUC of
0.75 (Figure 4B), confirming the generalizability of
the multimodal prediction model.

Association between Cellular Composition in
Pathological Images and Recurrence/Metastasis in
Early-Stage TNBC

We applied Grad-CAM to visualize the WSIs from
the training cohort and employed the HoVer-Net
model to segment and quantify cells within the
annotated regions of interest. As shown in the
attention map (Figure 5A), red regions represented
areas with stronger prognostic relevance, whereas
blue regions indicated weaker relevance.

Using HoVer-Net, we further performed cell
segmentation and classification (Figure 5a) and
identified five major types of cells: tumor,
lymphocytes, stromal, epithelial, and necrotic
(Figure 5B). To examine the relationship between
cellular composition and ROM, we conducted a
Wilcoxon rank-sum test comparing patients with
ROM and nROM (Figure 5C). The results revealed
that ROM patients had significantly lower
lymphocyte counts compared to nROM patients (P <
0.05). This difference was also visually evident in the
HoVer-Net segmentation outputs (Figure 5a).
Furthermore, we compared the relative abundance
of lymphocytes with other cell types within
prognostically relevant regions. The ratios of
lymphocytes to tumor, stromal, epithelial, and
necrotic cells were significantly higher in the nROM
group than in the ROM group (all P < 0.05)
(Supplementary Figure S4). Overall, these findings
enhance the interpretability of our prediction model
by linking histopathological morphology to
biologically meaningful variations in the tumor
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recurrence and metastasis in early-stage TNBC.

Pathological Image-based Prediction of Recurrence
and Metastasis in Early-stage TNBC May be
Associated with Differences in the Tumor Immune
Microenvironment

To  further investigate the biological
interpretability of the pathological image-based
prediction model for TNBC recurrence and
metastasis, we conducted an exploratory analysis
examining the relationship between image-derived
texture features and the tumor immune
microenvironment.

In the TCGA cohort, based on mRNA sequencing
data, the CIBERSORT deconvolution algorithm was
used to estimate the relative proportions of immune
cell populations and subtypes within each sample,
including T cells, B cells, macrophages, mast cells,
and dendritic cells (DCs) (Figure 6A). Differential
analysis identified significant differences (P < 0.05) in
the proportions of three macrophage subtypes,
one dendritic cell subtype, and mast cells between
patients with ROM and those with nROM (Figure
6B). Specifically, the ROM group exhibited elevated
levels of macro-CCL18 and quiescent_migDC cells,
suggesting a potential role for these immune subsets
in promoting poor prognosis. In addition, to ensure
robustness, we performed complementary
validation using the xCell algorithm. Owing to
inherent differences in immune cell type definitions
between CIBERSORT and xCell, the xCell-based
results further supported our findings, revealing a
significant increase in M2 macrophages and a
decrease in M1 macrophages within the ROM group
(Supplementary Figure S5). Notably, the macro-
CCL18 population, identified in this study,
corresponded to the M2 macrophage phenotype,
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Figure 4. Prediction results of the multimodal model integrating pathological images and clinical features.
(A) Performance of the prediction model in the training cohort; (B) Performance of the prediction model

in the external validation cohort.
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thereby providing biological validation from an
independent analytical perspective. Using the
WMCM method, we extracted 11 texture features
from the pathological images in the TCGA external
validation cohort and examined their associations
with patient prognosis. Significant differences (P <
0.05) were observed in several texture parameters,
including SGSDA, SGBDA, GLA, Regulation, Contrast,
IDM, and Entropy, between the ROM and nROM
groups (Table S2).

Finally, Pearson correlation analysis was
performed between immune cell types exhibiting
significant group differences and the extracted
image texture features. GLMSE, Contrast, and
Entropy were significantly  correlated  with
quiescent_migDC content, whereas SGSDA was
significantly correlated with macro-CCL18 levels
(Figure 6C). Collectively, these findings suggest that
pathological image-based predictions of recurrence
and metastasis in early-stage TNBC may partially
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Figure 5. Visual analysis of pathological image features associated with prognosis in early-stage TNBC. (A)
Attention maps generated by Grad-CAM and corresponding cell segmentation results using HoVer-Net;
(B) Comparison of cellular composition in pathological images from patients with different prognostic
outcomes; (C) Statistical analysis of differences in cell composition between ROM and nROM groups.
ROM, recurrence or metastasis; nROM, non-recurrence or metastasis



242 Biomed Environ Sci, 2026; 39(2): 232-248

A
0.16 -
0.14
0.12 A
0.10 -
0.08 -
0.06 -
0.04 -
0.02 A
0 A
F LR R R LR NN DO D DTS DL LD FF S
S O S o S S S S L L S ISP IS O T 9L F o S S T S E TS
<® §“(;z,‘\b S ¢°'q,‘§+ > & ,+ ,g,x\&oci@ 3§'\ («\e\ou/ m“(o&o‘?,{;o‘\%rz,é(;@d & o> Y ,béoqg‘,;\ ;@y",;éo ao’bz{\”’ ST P
" D/ © & &
S S é\’b S &'-b/ @6) é{\é sg% AS‘/%(@O [N é\’b é{\é <& @b‘/ & (\\é{_,o%‘y & (\\’b&é—& é\@é{@@
+<5‘ 2 +<5< S & QQ«
7/
0%3 <>“(’v %3&
&
B * * %
—— L — r—
03 macro.CCL18 0.3 macro.CCR2 03 quiescent_migDC
0.2 0.2 0.2
0.1
0.1 01
0 % 0 $
0
ROM nROM ROM nROM ROM nROM
*
03 macro.CX3CR1
0.2
* p<0.05
0.1 C ** p<0.01
I 1.00
0 macro-CCR2 0.75
ROM TROM Mast_cell - 0.50
03 * macro-CCL18 = * [ 0-25
: Mast_cell -0
macro-CX3CR1
- -0.25
0.2 . . e * *%
quiescent_migDC ~0.50
F FY 3 F LSS S QD -0.75
o1 & ¢’ 9 6& QS\ RIS ® &°
b < -1.00
= 1
ROM nROM

Figure 6. Interaction analysis between pathological image texture features and tumor immune cell
composition. (A) Immune cell proportions inferred using the CIBERSORT deconvolution algorithm; (B)
Differential analysis of immune cell composition between patients with different prognostic outcomes;
(C) Pearson correlation analysis between image texture features and significantly altered immune cell
types. ROM, recurrence or metastasis; nROM, non-recurrence or metastasis



Interpretable Al prognosis model for early TNBC

243

reflect heterogeneity in the tumor immune

microenvironment.

Pathological Image-based Prediction of Recurrence
and Metastasis in Early-stage TNBC May be
Associated with Differential Gene Expression

To further elucidate the biological interpretability
of pathological image-based prognostic predictions
for TNBC, we conducted an exploratory analysis
examining the relationship between image-derived
texture features and gene expression profiles. mRNA
sequencing data were obtained from the TCGA
database, and differential expression analysis
was performed using the DESeq2 package in R
(Figure 7A). A total of 1,587 differentially expressed
genes (DEGs) were identified between patients with

ROM and nROM (P < 0.05), comprising 763
upregulated and 824 downregulated genes.
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Several genes associated with poor prognosis
were significantly upregulated in the ROM group,
including MMP28 (involved in aminoglycan
biosynthesis) as well as VEGFC, KRT13, KRT10, and
HES5 (markers of epidermal differentiation). Given
the limited evidence regardingreports of HES5S in the
TNBC literature, we performed external validation
using two independent TNBC datasets from the GEO
database, both of which confirmed a consistent
trend of upregulation (Supplementary Figure S6). All
identified DEGs were subjected to GO functional
enrichment analysis, which revealed that genes
upregulated in the ROM group were primarily
enriched in pathways related to extracellular matrix
organization, extracellular structure formation,
epidermal differentiation, synaptic signaling, and
aminoglycan biosynthesis (Figure 7B, C). We then
examined the correlations between image-derived
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Figure 7. Interactionanalysisbetweenpathologicalimagetexturefeaturesandtumorimmunecellcomposition.
(A) Immune cell proportions inferred using the CIBERSORT deconvolution algorithm; (B) Differential
analysis of immune cell composition between patients with different prognostic outcomes; (C) Pearson
correlation analysis between image texture features and significantly altered immune cell types.



244

Biomed Environ Sci, 2026; 39(2): 232-248

texture features and the expression of key
upregulated genes. Notably, the expression levels of
VEGFC, HES5, and MMP28 in ROM patients showed
significant  associations with specific texture
features, including GLA, Regulation, Contrast, IDM,
and Entropy (Figure 7D).

Collectively, these findings suggest that
pathological image-based predictions of recurrence
and metastasis in early-stage TNBC may reflect
underlying transcriptomic alterations, particularly
those related to extracellular remodeling and tumor
progression.

DISCUSSION

TNBC is a highly aggressive subtype of breast
cancer, characterized by the absence of well-defined
biomarkers and effective targeted therapiesm].
Compared with other subtypes, TNBC exhibits earlier
relapse and a poorer prognosisB]. Consequently,
accurate prognostic prediction is essential for
guiding clinical decision-making and optimizing
treatment strategies. H&E-stained pathological
sections remain a cornerstone in routine clinical
diagnostics due to their low cost and accessibility.
With the rapid integration of deep learning into
digital pathology, several studies have demonstrated
its potential for predicting cancer prognosis using
histopathological wsls”®. However, because of the
relatively low incidence of TNBC, large-scale image-
based prognostic modeling studies in this subtype
remain limited.

In this study, we retrospectively analyzed 340
postoperative H&E stained WSIs from 318 patients
with early-stage TNBC and well-documented
recurrence/metastasis outcomes treated at the
Cancer Hospital, Chinese Academy of Medical
Sciences. A deep learning-based prognostic
prediction model was developed using five-fold
cross-validation, achieving an AUC of 0.805 in the
training cohort. When validated on an independent
external validation cohort from the TCGA database,
the model achieved an AUC of 0.858, indicating
strong generalizability. To further improve model
performance and interpretability, we incorporated
clinical variables into the framework. Differential
analysis identified five clinicopathological
features—age, number of axillary lymph node
metastases, pT stage, pN stage, and TNM
stage—that were significantly associated with
recurrence/metastasis. These features are consistent
with previously reported prognostic indicators in
TNBC, thereby supporting the reliability of our

dataset. The fusion of deep learning features from
pathological images with clinicopathological features
improved model performance, achieving an AUC of
0.86 in the training cohort. This confirms that
multimodal integration reduces data noise and
enhances prediction accuracy.

Deep learning offers a significant advantage by
automatically learning abstract feature
representations  through multi-layer  neural
networks, often outperforming traditional omics-
based methods such as radiomics or pathomics[zsl.
However, its complex architecture presents
significant challenges to interpretability—a critical
requirement in clinical applications. Despite recent
advancements, few studies have systematically
investigated the interpretability of deep learning
models in TNBC. In this study, Grad-CAM was used to
visualize attention regions within WSIs, revealing
prognostically relevant areas marked in red and less
relevant regions in blue. These maps demonstrated
that the model appropriately weighted different
tumor regions, regardless of recurrence status.

Using HoVer-Net, we further segmented five
distinct cell types within tumor regions—tumor,
lymphocytes, stromal, epithelial, and necrotic
cells—and compared their proportions between the
ROM and nROM groups. We found that non-
recurrent patients exhibited significantly higher
lymphocyte infiltration, which is consistent with
meta-analyses showing that increased numbers of
tumor-infiltrating lymphocytes are associated with
improved survival in TNBCP*?%, Furthermore, within
the prognostically relevant tumor regions, we
compared the lymphocyte content with that of the
tumor, epithelial, stromal, and necrotic cells. The
results showed that lymphocyte-to-other-cell ratios
were significantly higher in patients without
recurrence than in those with recurrence, regardless
of the reference cell type (Supplementary Figure S4).
In TNBC, tumor-infiltrating lymphocytes produce
anti-tumor cytokines and cytotoxic molecules (e.g.,
IFN-y, TNF-a, perforin, granzyme) that directly kill
tumor cells and activate immune responses. Some of
these lymphocytes differentiate into memory cells,
enabling the rapid recognition of recurrent tumor
cells through cytokines and chemokines such as IL-12
and CXCL9. These mechanisms foster a more
immunoreactive tumor microenvironment and help
prevent recurrence”™”". Our findings support this
hypothesis. Collectively, these results support that
cell composition within pathological images is
associated with clinical outcomes in early-stage
TNBC.
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The tumor immune microenvironment plays a
critical role in tumor progression, angiogenesis,
immune evasion, and treatment resistance®”.
Cellular composition within the microenvironment is
partially reflected in H&E-stained images, providing
valuable prognostic information. We used mRNA
sequencing data from the TCGA cohort and
CIBERSORT algorithm to infer immune cell
composition. Some of these results were further
validated using the xCell algorithm (Supplementary
Figure S5). Differential analysis revealed that macro-
CCL18 and quiescent_migDC cells were significantly
enriched in recurrent cases. Macro-CCL18, a subtype
of M2-type tumor-associated macrophages (TAMs),
secretes CCL18 chemokines that promote metastasis
and angiogenesis by interacting with PITPNM3,
contributing to poor prognosis in various cancers,
including esophageal cancer®3. |L-1q, through
activation of downstream signaling via the IL-
1R1/IRAK4 axis, can induce M2-like polarization of
TAMs, resulting in significant enrichment of M2-like
TAMs around tumor cells. This, in turn, activates
three key downstream signaling pathways: ERK1/2-
ZEB1-VIM, MKK4-JNK-c-Jun, and NF-kB, which
collectively enhance TNBC cell survival, migration,
and macrophage recruitment®. Moreover, studies
have demonstrated that in TNBC, a subtype with
poor prognosis, the non-coding RNA circ-0100519 is
highly expressed and can be transferred into TAMs
via exosomes. Upon internalization, circ-0100519
promotes M2 macrophage polarization through the
circ-0100519/USP7/NRF2 axis, thereby facilitating
the in vivo proliferation and metastasis of TNBC
cells®. Although quiescent_ migDCs have been
linked to T cell activation and anti-tumor immunity in
head and neck cancers®”, our findings suggest a
potential association with poor prognosis in TNBC,
which warrants further functional validation. These
immune-related findings provide mechanistic
support for image-based prognostic modeling.

Previous studies have shown that image-derived
texture features can predict the prognosis of various
tumors, including non-small cell lung cancer, gastric
cancer, and HER2-positive breast cancer?*#39,
Consistent with these findings, our study identified
several texture features, such as SGSDA, Contrast,
and Entropy, that were significantly associated with
TNBC prognosis (Supplementary Table S2). This
approach of converting image data into structured
information not only facilitates prognostic modeling
but also enhances the interpretability of deep
learning model outputs. However, the biological
mechanisms underlying these associations remain

unknown.

In the present study, we aimed to interpret these
correlations from the perspective of immune cell
infiltration and its physical impact on the tumor
microarchitecture. Previous research has
demonstrated that texture-based image analysis can
identify immune cell phenotypes and predict
immune profiles (IP) and overall survival (OS) in
patients with intrahepatic cholangiocarcinoma
(IcC)™®. Upon activation, macrophages and dendritic
cells (DCs) undergo morphological changes, including
alterations in cell borders, surface texture,
intracellular content, and spatial distribution™**],
Activated macrophages, for instance, exhibit
enlarged cell bodies with numerous pseudopodia
and roughened surfaces, which enhance light
scattering and appear with locally increased
brightness under microscopy[“]. In H&E-stained
slides, these cells contain abundant lysosomes and
phagocytic vesicles, which stain more intensely due
to increased eosinophilia, resulting in high-intensity
pixel regions in grayscale images and, consequently,
thicker textures captured by elevated SGSDA.

Similarly, when immune cells aggregate or
infiltrate the periphery of tumor nests, the
morphological and staining contrast between the
immune and tumor cells generates sharper local
boundaries®?. This, in turn, increases the grayscale
variation between adjacent regions, corresponding
to higher Contrast values. Furthermore, mature DCs
stimulated by tumor antigens adopt a spindle-
shaped morphology with smooth surfaces, fewer
cytoplasmic  vacuoles, and more uniform
distribution. In contrast, immature DCs exhibit
irregular shapes and greater grayscale variability[431.
These morphological differences result in localized
image homogenization and a reduction in overall
grayscale complexity and dispersion, as reflected by
the decreased GLMSE and Entropy values. Our
findings support the plausibility of these
associations.

Collectively, these specific texture features may
sensitively capture the morphological changes
induced by immune infiltration, including increased
tissue heterogeneity, more frequent interfaces, and
greater spatial complexity. Emphasizing that this
hypothesis is based on correlation analysis and
established biological knowledge is crucial. Texture
patterns in H&E-stained images are indirect,
integrative reflections of downstream morphological
alterations caused by immune activity, rather than
direct markers of immune cells. To further validate
and elucidate the causality of these mechanisms,
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future studies, including spatial co-localization
analysis using multiplex immunofluorescence, are
warranted. These results further enhance the
interpretability of our model by linking specific visual
features to the composition of the immune
microenvironment.

Gene expression profiles fundamentally govern
cellular  phenotypes and shape tissue-level
morphological patterns. To elucidate the molecular
basis underlying our image-based predictions, we
performed differential gene expression analysis
using the TCGA-TNBC cohort. DESeq2 identified
1,587 DEGs between patients with ROM and nROM.
Among these, MMP28, VEGFC, and HES5 were
significantly upregulated in the ROM group,
suggesting their potential involvement in disease
progression. VEGFC, the first lymphangiogenic
member of the VEGF family, plays a central role in
lymphatic endothelial cell proliferation, migration,
and lymphatic sinus formation™. Its overexpression
has been documented in multiple malignancies,
including TNBC, and is strongly associated with
lymphatic dissemination and adverse prognosis[45'47].
In TNBC, polarized M2-like TAMs secrete VEGF-C,
which  induces the expression of PCATS,
subsequently activating the Akt/mTOR signaling
cascade and upregulating VEGFR2 expression. This
axis promotes tumor cell proliferation, invasion,
epithelial-mesenchymal transition (EMT), and
angiogenesis, ultimately facilitating tumor
progression and poor clinical outcomes™™. Matrix
metalloproteinases (MMPs) play a pivotal role in
extracellular matrix remodeling and tumor
progression. MMP28, in particular, has been
implicated in enhancing the secretion of pro-
tumorigenic cytokines such as IL-8 and VEGFA via
MAPK/JNK pathway activation””. These cytokines
function not only as chemotactic agents but also as
key mediators of M2 TAM polarization, partly
through the modulation of TAM amino acid
metabolism. Furthermore, MMP28 interacts with
ANXA2 to facilitate M2 TAM recruitment*®. In TNBC,
M2 TAMs further interact with the PI3K/AKT/IL-
34/CSF1R signaling axis, which contributes to the
establishment of an immunosuppressive tumor
microenvironment that promotes tumor cell
proliferation and metastatic dissemination®”. Our
study supports these mechanisms by identifying a
marked elevation in the macro-CCL18-positive M2
TAM subset in patients with ROM, which further
reinforces the reliability and clinical relevance of our
findings. The HES5 transcription factor, which
regulates cellular differentiation, has been primarily

studied in gliomas, with limited investigation in
breast cancer”". To further explore its role in TNBC,
we conducted external validation using publicly
available datasets from the GEO database
(Supplementary Figure S6). In the GSE21653 cohort,
HESS5 expression was significantly upregulated in the
ROM group, while a non-significant upward trend
was observed in the GSE58812 cohort, suggesting a
context-dependent relevance that warrants further
functional investigation. Finally, correlation analysis
between key DEGs and quantitative imaging features
revealed that grayscale complexity, sharpness,
depth, and brightness were positively associated
with high expression levels of VEGFC, HES5, and
MMP28. These findings suggest that image-derived
texture patterns may  reflect  underlying
transcriptomic alterations, thereby reinforcing the
biological interpretability of our deep learning
model.

Despite these encouraging results, this study has
several limitations. First, as a retrospective analysis,
selection bias may be a factor; therefore, future
prospective studies with larger cohorts are necessary
to validate our findings. Second, the biological
interpretations in this study are primarily based on
transcriptomic  data, and further functional
experiments are required to validate key genes and
clarify the causal pathways. Additionally, texture
features extracted from H&E-stained images likely
reflect indirect morphological changes driven by
immune activity, rather than directly identifying
immune cell subtypes. The future integration of
spatial transcriptomics or multiplex
immunofluorescence will be crucial for confirming
these associations and further uncovering the
underlying mechanisms.

CONCLUSION

In this study, we developed and validated a deep
learning—based prognostic prediction model for
early-stage TNBC using H&E-stained pathological
WSIs. The model demonstrated robust performance
in both internal and external cohorts and was further
strengthened by integrating clinicopathological
features. To address the “black box” nature of deep
learning, we conducted a multilevel interpretability
analysis. Through visualization techniques, immune
cell profiling, texture feature extraction, and
transcriptomic  correlation, we revealed that
pathological images are biologically linked to specific
cellular and molecular characteristics of the tumor
microenvironment.
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Our findings highlight that image-derived
features reflect immune cell composition,
particularly the macro-CCL18 and quiescent_migDC
cell subsets, as well as the expression of poor
prognostic genes, such as VEGFC, MMP28, and HES5.
These insights provide a mechanistic explanation for
the predictive capability of pathological images and
establish a foundation for biologically interpretable
Al models of TNBC. While further experimental
validation is warranted, our study demonstrates the
feasibility and clinical potential of using pathological
images to predict the recurrence and metastasis of
early-stage TNBC. This approach offers a cost-
effective, scalable, and biologically meaningful tool
to support personalized treatment planning and
precision oncology.
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