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Abstract

Objective　 To  develop  a  prognostic  prediction  model  for  early-stage  triple-negative  breast  cancer
(TNBC)  using  H&E-stained  pathological  images  and  to  investigate  its  underlying  biological
interpretability.

Methods　A  deep  learning  model  was  trained  on  340  WSIs  and  externally  validated  using  81  TCGA
cases.  Image-derived  features  extracted  through  convolutional  neural  networks  were  integrated  with
clinicopathological  variables.  Model  performance  was  assessed  using  ROC  curve  analysis,  and
interpretability was evaluated by correlating image features with mRNA-seq data and characteristics of
the immune microenvironment.

Results　The model achieved AUCs of 0.86 and 0.75 in the training and validation cohorts, respectively.
Analysis  using  HoVer-Net  indicated  that  lymphocyte  abundance  was  associated  with  recurrence  risk.
Texture-related  features  showed  significant  correlations  with  immune  cell  infiltration  and  prognostic
gene expression profiles.

Conclusion　This study demonstrates that deep learning can enable accurate prognostic  prediction in
early-stage TNBC, with interpretable image features that reflect the tumor immune microenvironment
and gene expression profiles.

Key  words: Triple-negative  breast  cancer; Prognostic  prediction  model; Deep  learning; H&E-stained
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 INTRODUCTION

A ccording  to  GLOBOCAN  2022,  breast
cancer  remains  the  most  prevalent
malignancy  among  women  worldwide,

with  an  estimated  2.31  million  new  cases  and
670,000  deaths  reported  in  2022.  Triple-negative

breast  cancer  (TNBC),  characterized  by  the  absence
of  estrogen  receptor  (ER),  progesterone  receptor
(PR), and human epidermal growth factor receptor 2
(HER2)  expression,  accounts  for  approximately
10%–20% of  all  breast  cancer  cases  globally,
representing more than 230,000 new diagnoses each
year.  In  China  alone,  approximately  357,200  new
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breast  cancer  cases  and  75,000  deaths  were
reported in 2022, contributing to 15.5% of the global
incidence  and  11.2% of  global  mortality[1,2].
Compared with hormone receptor-positive or HER2-
positive  subtypes,  TNBC  exhibits  a  more  aggressive
biological  phenotype  and  is  associated  with  poorer
clinical  outcomes,  with  over  20% of  patients
experiencing  disease  recurrence  within  3–5  years
after  diagnosis[3].  Despite  numerous  investigations
exploring  prognostic  determinants—spanning
clinicopathological,  genomic,  transcriptomic,  and
tumor  microenvironmental  factors[4,5]—traditional
indicators  such  as  tumor  size,  axillary  lymph  node
status,  and  age  at  diagnosis  remain  suboptimal  for
accurately  stratifying  recurrence  risk[6].  Meanwhile,
the  widespread  clinical  implementation  of
comprehensive molecular profiling is constrained by
high  cost,  extended  turnaround  time,  and  technical
complexity.

Hematoxylin  and eosin  (H&E)  staining remains  a
cornerstone  of  pathological  assessment  due  to  its
simplicity,  cost-effectiveness,  and  ability  to  capture
critical  morphological  features,  such  as  tumor
architecture,  cellular  composition,  and  spatial
distribution. Recent studies have demonstrated that
subtle  variations  in  cell  morphology  visible  in  H&E-
stained  histopathological  images  can  reflect
underlying  molecular  alterations  and  are  strongly
associated  with  the  prognosis  of  multiple
malignancies[7-9].  The  rapid  development  of  deep
learning has transformed image analysis, particularly
within  medical  imaging  and  digital  pathology.
Applying  deep  learning  algorithms  to  H&E-stained
whole-slide  images  (WSIs)  facilitates  the  extraction
of  high-dimensional  morphological  patterns
associated  with  disease  recurrence  and  metastasis
potential.  For  instance,  Zhang et  al[8].  developed  a
prognostic  model  (PathoSig)  based  on  H&E  digital
slides  and  validated  its  predictive  performance  in
independent  cohorts.  Similarly,  Saillard et  al[10].
constructed  deep  learning  models  that
outperformed  conventional  clinicopathological
variables  in  predicting  overall  survival  among
patients with liver cancer. Collectively, these findings
highlight  the  growing potential  of  integrating  digital
pathology  with  artificial  intelligence  for  patient  risk
stratification.  However,  research  focusing  on  early-
stage TNBC remains limited.

A  major  challenge  to  the  clinical  translation  of
deep  learning-based  models  lies  in  their  limited
interpretability.  Due  to  the  complex,  nonlinear
structure  of  neural  networks,  elucidating  how
parameters  such  as  weights,  biases,  and  inter-layer

interactions  influence  the  model  output  is  often
challenging. As a result, these models are frequently
regarded as “black  boxes”[11-13].  In  the medical  field,
where  transparency  and  decision  accountability  are
paramount,  model  interpretability  is  especially
critical. Current strategies to enhance interpretability
generally  fall  into  two  major  categories[14-16]:  (1)
direct  visualization  of  model  attention  using
techniques  such  as  class  activation  maps  (CAM)[17];
and  (2)  feature  engineering  approaches  that
transform  image  data  into  structured  quantitative
features—similar  to  those  used  in  radiomics  or
pathomics[18]—followed  by  correlation  analyses
employing  descriptors  such  as  shape,  texture,  and
first-order  statistical  metrics[19-21].  However,  these
approaches  often  compromise  the  predictive
performance  of  the  model.  Moreover,  few  studies
have  explored  interpretable,  deep  learning-based
prognostic  modeling  using  histopathological  images
in TNBC.

In  this  study,  we  analyzed  340  postoperative
H&E-stained  pathological  sections  from  318  TNBC
patients  with  complete  recurrence  and  metastasis
follow-up  data  obtained  from  the  Cancer  Hospital,
Chinese  Academy  of  Medical  Sciences  (2009–2017).
A deep learning framework was developed to extract
image-derived  features  from  WSIs  and  integrate
them  with  clinical  variables  for  recurrence  and
metastasis  risk  prediction.  Independent  external
validation  was  performed  using  WSIs  from  81
patients  with  TNBC  in  the  Cancer  Genome  Atlas
(TCGA)  cohort.  Furthermore,  we  conducted  a
differential  analysis  of  cellular  composition,
extracted  texture-related  features  from  WSIs,  and
examined their associations with the tumor immune
microenvironment  and  gene  expression  profiles.
Through  interpretability  analysis  of  the  model,  we
aimed  to  explore  the  biological  mechanisms
captured  in  histopathological  images  that  may
contribute to early TNBC recurrence and metastasis.

 MATERIALS AND METHODS

 Data Collection of TNBC Patients

The clinical data of patients with TNBC admitted
to the Cancer Hospital, Chinese Academy of Medical
Sciences, between January 2009 and December 2017
were  retrospectively  collected.  Patients  were
included if  they  met  all  of  the  following  criteria:  (1)
Female  patients  who  underwent  breast-conserving
surgery or modified radical  mastectomy for the first
time,  with  available  H&E-stained  pathological
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sections  of  the  primary  tumor;  (2)  Histologically
confirmed  primary  invasive  breast  cancer  with  a
postoperative pathological stage of I–III, according to
the  AJCC  8th  edition;  (3)  Immunohistochemistry
(IHC)  results  showing  ER-,  PR-,  and  HER2  1+  or  2+
with  non-amplified  HER2  gene  status  confirmed  by
fluorescence  in  situ  hybridization  (FISH);  and  (4)
Availability  of  complete  clinicopathological  data,
including age, date of surgery, pathological findings,
treatment details, and recurrence/metastasis status.
The  exclusion  criteria  were  as  follows:  (1)  presence
of other malignant tumors;  (2)  diagnosis  of  bilateral
breast  cancer;  (3)  low-quality  whole-slide  images
(WSIs); and (4) absence of prognostic follow-up data.
In  total,  318  patients  with  340  eligible  WSIs  were
included  in  the  training  cohort.  Using  the  same
inclusion  and  exclusion  criteria,  an  independent
external  validation  cohort  was  established  from  81
early-stage  TNBC  patients  in  the  TCGA  database
(https://portal.gdc.cancer.gov/repository),  which
included  postoperative  H&E-stained  WSIs,
corresponding  clinicopathological  data,  and  mRNA
sequencing  (mRNA-seq)  profiles.  All  datasets  were
standardized  to  ensure  consistency  and
comparability across cohorts. The patient enrollment
flow chart is presented in Figure 1.

 Image Preprocessing

A  standardized  workflow  was  implemented  for
pathological  image  preprocessing.  Two  senior
pathologists  independently  conducted  quality
control  of  WSIs,  excluding slides  with tissue overlap
> 5% or tumor area < 10%. Tumor regions of interest
(ROIs)  were manually annotated under double-blind
conditions  using  ASAP  (v1.9),  and  all  annotations
were verified by a third expert pathologist. To assess

inter-observer  consistency,  20  WSIs  were  randomly
selected,  and  the  ROIs  delineated  by  both
pathologists  (Supplementary  Figure  S1)  were
compared  using  a  Python  3.8  script  (libraries:
shapely  2.0.1,  scikit-image  0.22.0,  numpy  1.24.4,
lxml  4.9.3).  Dice  similarity  coefficients,  calculated
from  merged  and  rasterized  annotations,  ranged
from  0.84  to  0.98  (Supplementary  Table  S1),
demonstrating  excellent  annotation  consistency.
Given  the  ultra-high  resolution  of  WSIs  (averaging
240  ±  80  million  pixels  per  slide),  we  developed  a
parallel  image-processing  pipeline  using  OpenSlide
(v3.4.1),  comprising  the  following  steps:  (1)
Extraction  of  512×512  pixel  non-overlapping  image
patches  at  20×  magnification  (256-pixel  stride);  (2)
Application  of  Gaussian  denoising  and  Canny  edge
detection  using  OpenCV  (v4.6.0);  (3)  Automatic
removal  of  image  patches  with  >  25% blank  areas
(determined  by  HSV  color-space  thresholding).
Finally,  Macenko  stain  normalization  (parameters  α
=  0.5,  β  =  0.15)  was  applied  to  standardize  H&E
staining characteristics and ensure uniformity across
inputs for model training.

 Deep Learning Model Construction Strategy

We  adopted  ResNet-18,  a  convolutional  neural
network  (CNN)  with  residual  modules,  as  the
backbone  of  our  prognostic  prediction  model.
Traditional  CNNs  consist  of  convolutional  filters,
pooling  layers,  and  fully  connected  layers.  In
contrast, ResNet-18 introduces skip connections that
enable  direct  information  flow  across  residual
blocks,  improving  gradient  propagation  and
mitigating  the  degradation  and  vanishing  gradient
issues  commonly  encountered  with  deeper
networks.  The  model  was  implemented  using  the
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PyTorch library.
 Transfer  Learning  Based  on  ResNet-18　 The
network  was  initialized  with  pre-trained  weights
from the ImageNet dataset.  Fine-tuning of  all  layers
was performed via backpropagation, with the cross-
entropy loss function defined between the predicted
probabilities  and  ground-truth  labels.  Stochastic
Gradient  Descent  (SGD)  was  used  for  optimization,
with a learning rate of 0.001, momentum of 0.9, and
learning rate decay applied every seven epochs using
a  decay  factor  (gamma)  of  0.1.  Training  was
conducted for 20 epochs.
 Five-Fold  Cross-Validation　 Model  training  and
internal  validation  were  performed  using  five-fold
cross-validation  (Figure  2b).  Each  WSI  was  divided
into non-overlapping image patches, which inherited
patient-level  labels  (i.e.,  recurrence  or  metastasis).
The  patches  were  randomly  split  into  five  equally
sized  subsets  with  a  balanced  label  distribution.  In
each  fold,  one  subset  was  used  for  validation,  and
the  remaining  subsets  were  used  for  training.  To
address label imbalance, downsampling was applied
to  equalize  the  number  of  patches  per  class  in  the
training set.  The prediction scores  for  each patch in
the  validation  set  were  obtained,  and  patient-level
predictions  were  computed by  averaging  the  scores
of all patches from the same patient. One model was
saved  per  fold,  and  the  best-performing  model  was
selected based on the validation accuracy.
 Independent  External  Validation　 The  optimal

hyperparameters  identified  during  cross-validation
were  used  to  retrain  the  final  model  on  the  entire
training  cohort.  This  finalized  model  was  then
applied to the TCGA cohort for independent external
validation.
 Multimodal  Feature  Fusion  Strategy　Following  the
preprocessing  of  clinical  data,  a  random  forest  (RF)
algorithm  was  applied  to  compute  the  Gini
importance  of  each  feature  in  the  training  set.
Features  with  importance  scores  greater  than  0.01
were selected, resulting in 24 key clinicopathological
variables,  such  as  age,  pathological  stage,
histological  grade,  adjuvant  chemotherapy,  and
adjuvant radiotherapy. These variables were further
evaluated  using  the  Wilcoxon  rank-sum  test  and  T-
test  to  determine  significant  differences  between
the  recurrence/metastasis  and  non-
recurrence/metastasis  groups.  Features  showing
statistically  significant  differences  (P <  0.05)  were
retained  for  integration  into  the  final  prognostic
model.  For  multimodal  feature  fusion,  this  study
employed  Multimodal  Compact  Bilinear  Pooling
(MCB).  First,  high-dimensional  representations  of
image  patches  were  extracted  using  a  pretrained
neural  network,  while  clinical  variables  were
encoded  with  a  multilayer  perceptron  (MLP).  The
Count  Sketch  method  was  then  used  for
approximation.  After dimensionality reduction,  both
feature  vectors  were  projected  into  a  higher-
dimensional  space,  where  efficient  fusion  was
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achieved  through  element-wise  multiplication  in  a
Fast  Fourier  Transform  (FFT)  space.  This  specific
approach  involves  transforming  features  into  the
frequency domain, computing inner products in this
domain,  and  then  returning  the  results  to  the
temporal  domain  using  inverse  FFT.  This  method
offers  three  main  advantages:  (1)  Reduced
computational  complexity  through  implicit  outer-
product  operations,  resulting in  faster  computation;
(2)  Complete  preservation  of  cross-modal  feature
interactions; and (3) An end-to-end architecture that
supports gradient backpropagation optimization.

 Visualization Analysis

We  applied  two  visualization  approaches  to
interpret  the  neural  network  model.  First,  during
model  training,  the  network  assigned  a  continuous
risk  score  to  each  image  patch,  reflecting  its
contribution  to  the  prognostic  prediction.  These
scores  were  then  mapped  to  color  values  using
Gradient-weighted  Class  Activation  Mapping  (Grad-
CAM),  following  a  linear  mapping  protocol:
prognostic  relevance  (ranging  from  0  to  1)
corresponded  to  RGB  color  gradients.  Second,  to
explore cell-level features, we employed the HoVer-
Net model[22] to segment and classify individual cells
within the tumor regions. The nuclear segmentation
process  involved  two  key  steps:  (1)  the  pixel
prediction  branch  identified  nuclear  pixels,  and  (2)
the  distance  map  prediction  branch  generated
horizontal  and  vertical  distance  maps  to  precisely
delineate adjacent or overlapping nuclear pixels. This
integrated  approach  successfully  classified  five
distinct  nuclear  cell  types:  epithelial  cells,
lymphocytes, tumor cells, stromal cells, and necrotic
cells.  By  quantifying  cellular  composition  and
performing  differential  analysis,  we  revealed  that
intratumoral  heterogeneity  may  be  associated  with
patient prognosis.

 Extraction of Image Texture Features

For  each  preprocessed  histopathological  image
patch,  we  applied  a  two-dimensional  wavelet
transform  and  wavelet  packet  transform  (2D-WPT),
resulting in four 256×256 pixel sub-images: the high-
frequency  noise  sub-image  (High–High,  HH),  the
vertical  detail  sub-image  (Low–High,  LH),  the
horizontal  detail  sub-image (High–Low, HL),  and the
approximation  sub-image  (Low–Low,  LL).  We  then
computed  the  overall  detail  sub-image  (LHL)  and
quantized  both  the  approximation  (LL)  and  detail
(LHL) sub-images to 16 gray levels. Subsequently, we
extracted  11  texture  features  based  on  the  wavelet

multi-sub-band  co-occurrence  matrix  (WMCM)[23].
These features included: Small  Gray-Level and Small
Detail  Advantage  (SGSDA),  Small  Gray-Level  and  Big
Detail Advantage (SGBDA), Gray Level Average (GLA),
Detail  Level Average (DLA), Gray Level Mean Square
Error  (GLMSE),  Detail  Level  Mean  Square  Error
(DLMSE),  Correlation,  Regulation,  Contrast,  Inverse
Difference Moment (IDM), and Entropy.

 Differential  Analysis  of  the  Immune
Microenvironment and Gene Expression

Raw  RNA-seq  data  (including  FPKM  and  UQ-
normalized  expression  values)  and  matched  clinical
annotation  data  were  obtained  from  the  TCGA
official  data  portal  (https://portal.gdc.cancer.gov/).
Only  patients  with  complete  clinical  staging  and
follow-up survival data were included.
 Differential  Expression  Analysis　 This  was
performed  using  DESeq2  (v1.38.3)  following  this
workflow:  (1)  Expression  Normalization:  Library  size
correction  was  conducted  based  on  the  negative
binomial  distribution  model;  and  (2)  Differentially
Expressed  Gene  (DEG)  Screening:  The  significance
threshold was set  at  an FDR-adjusted P-value (padj)
< 0.05, with an absolute log2 fold change (|log2 FC|)
> 1. Multiple testing correction was applied using the
Benjamini-Hochberg method.
 Functional  Enrichment  Analysis　 This  was
performed  on  the  identified  DEGs  using  the
following steps: (1) GO Enrichment: Conducted using
the  clusterProfiler  package  (v4.0);  (2)  Background
Gene  Set:  Protein-coding  genes  annotated  in  the
human  genome  (Ensembl  GRCh38.p13);  (3)
Significance  Threshold:  A  Benjamini-Hochberg-
corrected q-value  <  0.05  was  used;  and  (4)
Visualization:  The  top  10  significantly  enriched
pathways  and  their  core  regulatory  gene  networks
were  visualized  using  the  enrichplot  package  via
cnetplot.
 Immune  Microenvironment  Profiling　 This  was
performed  using  the  CIBERSORTx  platform
(https://cibersortx.stanford.edu/)  with  the  following
analytical  pipeline:  (1)  Reference  Signature  Matrix:
The  LM22  signature  matrix  (containing  22  immune
cell  subtypes)  was  employed  as  the  reference
profile;  (2)  Quality  Control:  The  algorithm
automatically  screens  and  preprocesses  the  gene
expression  matrix  based  on  data  quality  and
characteristics,  effectively  removing  noise  and
outliers  that  could  compromise  result  accuracy.  In
addition,  we  implemented  stringent  quality  control
measures  during  preprocessing,  including  the
removal  of  low-expression  genes  and  correction  for
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batch  effects.  Only  high-confidence  samples  with
deconvolution  P-values  <  0.01  were  retained  for
downstream  analyses,  thereby  minimizing  the  need
for additional filtering; (3) Immune cell estimation: In
this  study,  we  employed  the  CIBERSORT  algorithm
with  its  default  setting  of  1,000  permutations  to
estimate  the  composition  of  tumor-infiltrating
immune  cells.  This  iteration  number  strikes  a  well-
established  balance  between  computational
efficiency  and  result  accuracy.  (4)  Inter-group
Comparison:  Statistical  differences  in  immune  cell
infiltration  proportions  between  subgroups  were
assessed  using  the  non-parametric  Wilcoxon  rank-
sum  test.  To  validate  the  immune  cell  composition
estimates,  we  also  employed  the  xCell  algorithm  as
an independent approach, enhancing the robustness
and  reliability  of  our  findings.  Immune  cell
enrichment  analysis  was  performed  using  the  xCell
platform  (http://xcell.ucsf.edu/).  The  analytical
pipeline  consisted  of  four  key  components:  (1)  Cell
Type  Signature  Database:  The  reference  signatures
incorporated  10,808  curated  gene  markers  from  64
human cell types, including 36 immune cell subtypes,
14  stromal  cell  types,  and  14  hematopoietic
progenitors.  These  signatures  were  integrated  from
the  FANTOM5,  ENCODE,  and  Blueprint  Epigenome
projects,  with  cross-validation  via  RNA-seq
compendia;  (2)  Preprocessing  and  Quality  Control:
Gene  expression  matrices  underwent  Low-
expression  filtering:  Genes  with  log2(CPM)  <  1  in  >
90% samples  were  excluded;  (3)  Enrichment  Score
Calculation:  Cell  type  abundance  was  quantified
using  the  ssGSEA  implementation,  with  rank-
normalized gene expression values transformed into
enrichment  scores;  Spillover  compensation:  Built-in
deconvolution  correction  was  applied  for  lineage-
similar  cell  types;  Output  normalization:  Raw scores
were  converted  to  0–1  scaled  indices via platform-
defined  transformation.  (4)  Statistical  Comparison:
Differential  enrichment  between  recurrence  and
non-recurrence  groups  was  assessed  using  the
Wilcoxon  rank-sum  test,  with  Benjamini-Hochberg
FDR correction applied.

 Additional Statistical Analyses

Statistical  analyses  were  conducted  using  SPSS
version 27.0 and R version 4.2.1.  The distribution of
continuous  variables  was  assessed  using  the
Shapiro–Wilk  test.  Variables  with  a  normal
distribution  were  expressed  as  mean  ±  standard
deviation  (SD),  while  non-normally  distributed
variables were reported as median (IQR). Categorical
variables  are  summarized  as  frequencies  and

percentages.  Between-group  comparisons  were
performed  based  on  data  type  and  distribution.
Normally  distributed  variables  with  homogeneous
variances  were  compared  using  the  independent
samples  t-test,  whereas  the  Mann–Whitney  U  test
was  applied  to  non-normally  distributed  variables.
The  performance  of  the  prediction  model  was
evaluated  by  calculating  the  AUC.  Pearson’s
correlation  analysis  was  used  to  assess  linear
relationships  between  variables. P-value  <  0.05  was
considered statistically significant.

 RESULT

 Prediction  of  Recurrence  and  Metastasis  in  Early-
Stage TNBC Based on Pathological Images

We used 340 WSIs from 318 patients with early-
stage  TNBC  treated  at  the  Cancer  Hospital,  Chinese
Academy of Medical Sciences, as the training cohort.
Among  these,  118  WSIs  were  from  patients  with
recurrence  or  metastasis,  while  222  were  from
patients  without  recurrence  or  metastasis.  To
evaluate  the  model’s  robustness,  we  performed
independent external  validation using 81 WSIs  from
the  TCGA  cohort,  which  included  eight  cases  with
recurrence  or  metastasis  and  73  without.  The  deep
learning-based CNN model achieved an AUC of 0.805
in  the  training  cohort  through  five-fold  cross-
validation  (Figure  3a).  The  model’s  accuracy,
precision, recall,  and F1-score were 0.71, 0.56, 0.58,
and  0.54,  respectively.  In  the  external  TCGA
validation  cohort,  the  model  achieved  an  AUC  of
0.858  (Figure  3b),  demonstrating  strong
generalization  capability.  HER2-positive  breast
cancer is associated with a higher risk of recurrence.
To further validate our prognostic model, we applied
it  to  83  early-stage  HER2-positive  patients  at  the
Cancer  Hospital,  Chinese  Academy  of  Medical
Sciences  (19  with  recurrence  and  64  without
recurrence).  The  inclusion  criteria  and  WSI
processing pipeline were consistent with those used
for  the  TNBC  cohort.  Despite  not  performing
subtype-specific  parameter  tuning,  the  model
achieved an AUC of 0.73 (Supplementary Figure S2),
highlighting its generalizability.

Based  on  the  model  predictions,  patients
classified  as  having  recurrence  or  metastasis  were
defined as the high-risk group, while those predicted
to be non-recurrent were categorized as the low-risk
group.  Survival  analyses  were performed for  overall
survival  (OS)  and  disease-free  survival  (DFS)
according  to  the  model-predicted  risk  categories
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(Figure  3C,  D).  The  results  showed  statistically
significant differences between the groups, with the
model-predicted  low-risk  group  demonstrating
superior  outcomes  for  both  OS  and  DFS,  further
validating the predictive accuracy of the model.

 Integration  of  Deep  learning  and
Clinicopathological  Features  Enhances  Model
Performance and Interpretability

The  clinical  data  of  the  318  patients  were
analyzed,  and  their  baseline  characteristics  are
summarized  in Table  1.  Five  clinicopathological
features  (age,  number  of  metastatic  axillary  lymph
nodes  (ALNs),  pT  stage,  pN  stage,  and  TNM  stage)
showed  significant  differences  (P <  0.05)  between
the  recurrence  or  metastasis  (ROM)  and  non-
recurrence  or  metastasis  (nROM)  groups.  These
features were used to construct a prognostic model
based solely on clinicopathological data using logistic
regression  (LR),  support  vector  machine  (SVM),  k-
nearest  neighbors  (KNN),  and  other  machine
learning algorithms. The model achieved the highest
AUCs of 0.669 and 0.699 in the training and external

validation  cohorts,  respectively  (Supplementary
Figure  S3),  both  of  which  were  inferior  to  those  of
the  deep  learning-based  model  using  H&E-stained
WSIs.

To  further  improve  the  performance  and
interpretability  of  the  prediction  model,  we
incorporated  clinical  data  to  enhance  decision-
making accuracy. We then used MCB to linearly fuse
the  deep  learning  features  extracted  from
pathological  images  with  the  five  selected
clinicopathological  features.  The  resulting  model,
trained  with  five-fold  cross-validation,  achieved  an
AUC of 0.86 (Figure 4A),  demonstrating a significant
improvement  over  the  image-only  model.
Additionally,  the  accuracy,  precision,  recall,  and  F1-
score  were  0.806,  0.702,  0.690,  and  0.693,
respectively,  substantially  higher  than  those
obtained  without  clinical  data  integration.  These
findings  indicate  that  including  clinicopathological
information  effectively  enhances  model
performance  and  supports  more  accurate
predictions. Furthermore, model interpretability was
improved by incorporating clinical variables. External
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Table 1. Baseline characteristics of enrolled patients

ROM (n = 106) % nROM (n = 212) % P

Age (SD) 48.7 (10.3) 51.5 (9.8) 0.019

Menopausal status

Pre- 61 57.5 98 46.2 0.057

Post- 45 42.5 114 53.8

TNM stage

Stage I 21 19.8 91 42.9 < 0.001

Stage II 50 47.2 102 48.1

Stage III 35 33.0 19 9.0

pT stage < 0.001

T1 37 34.9 114 53.8

T2 64 60.4 96 45.3

T3 3 2.8 2 0.9

T4 2 1.9 0 0

pN stage < 0.001

N0 47 44.3 150 70.8

N1 25 23.6 43 20.3

N2 16 15.1 13 6.1

N3 18 17.0 6 2.8

ALN metastasis number (IQR) 1 (7) 0 (1) < 0.001

Surgery history 0.266

Radical surgery 52 49.1 118 55.7

Breast con- Serving 54 50.9 94 44.3

Tumor grade

Grade 1 3 2.8 4 1.9 0.057

Grade 2 35 33.1 44 20.8

Grade 3 63 59.4 149 70.3

Unknown 5 4.7 15 7.0

Adjuvant chemotherapy 0.056

A 2 1.9 3 1.4

T 0 0.0 14 6.7

A + T 63 59.4 129 60.8

T + P 33 31.1 59 27.8

Others 8 7.6 7 3.3

Adjuvant radiation 0.341

Yes 57 53.8 102 48.1

No 49 46.2 110 51.9

　　Note. ROM,  recurrence  or  metastasis;  nROM,  non-recurrence  or  metastasis;  pT  stage,  pathological  T
stage;  pN  stage,  pathological  N  stage;  ALN,  Axillary  lymph  nodes;  A,  Anthracyclines;  T,  Taxanes;  P,  Platinum
drugs
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validation using the TCGA dataset yielded an AUC of
0.75  (Figure  4B),  confirming  the  generalizability  of
the multimodal prediction model.

 Association  between  Cellular  Composition  in
Pathological  Images  and  Recurrence/Metastasis  in
Early-Stage TNBC

We applied Grad-CAM to visualize the WSIs from
the  training  cohort  and  employed  the  HoVer-Net
model  to  segment  and  quantify  cells  within  the
annotated  regions  of  interest.  As  shown  in  the
attention  map  (Figure  5A),  red  regions  represented
areas  with  stronger  prognostic  relevance,  whereas
blue regions indicated weaker relevance.

Using  HoVer-Net,  we  further  performed  cell
segmentation  and  classification  (Figure  5a)  and
identified  five  major  types  of  cells:  tumor,
lymphocytes,  stromal,  epithelial,  and  necrotic
(Figure  5B).  To  examine  the  relationship  between
cellular  composition  and  ROM,  we  conducted  a
Wilcoxon  rank-sum  test  comparing  patients  with
ROM  and  nROM  (Figure  5C).  The  results  revealed
that  ROM  patients  had  significantly  lower
lymphocyte counts compared to nROM patients (P <
0.05). This difference was also visually evident in the
HoVer-Net  segmentation  outputs  (Figure  5a).
Furthermore,  we  compared  the  relative  abundance
of  lymphocytes  with  other  cell  types  within
prognostically  relevant  regions.  The  ratios  of
lymphocytes  to  tumor,  stromal,  epithelial,  and
necrotic  cells  were  significantly  higher  in  the  nROM
group  than  in  the  ROM  group  (all P <  0.05)
(Supplementary  Figure  S4).  Overall,  these  findings
enhance the interpretability of our prediction model
by  linking  histopathological  morphology  to
biologically  meaningful  variations  in  the  tumor
immune  microenvironment  associated  with

recurrence and metastasis in early-stage TNBC.

 Pathological  Image-based  Prediction  of  Recurrence
and  Metastasis  in  Early-stage  TNBC  May  be
Associated  with  Differences  in  the  Tumor  Immune
Microenvironment

To  further  investigate  the  biological
interpretability  of  the  pathological  image-based
prediction  model  for  TNBC  recurrence  and
metastasis,  we  conducted  an  exploratory  analysis
examining  the  relationship  between  image-derived
texture  features  and  the  tumor  immune
microenvironment.

In the TCGA cohort,  based on mRNA sequencing
data,  the  CIBERSORT  deconvolution  algorithm  was
used to estimate the relative proportions of immune
cell  populations  and  subtypes  within  each  sample,
including  T  cells,  B  cells,  macrophages,  mast  cells,
and  dendritic  cells  (DCs)  (Figure  6A).  Differential
analysis identified significant differences (P < 0.05) in
the  proportions  of  three  macrophage  subtypes,
one  dendritic  cell  subtype,  and  mast  cells �between
patients  with  ROM  and  those  with  nROM �(Figure
6B).  Specifically,  the  ROM  group  exhibited  elevated
levels  of  macro-CCL18  and  quiescent_migDC  cells,
suggesting a potential role for these immune subsets
in  promoting  poor  prognosis.  In  addition,  to  ensure
robustness,  we  performed  complementary
validation  using  the  xCell  algorithm.  Owing  to
inherent  differences  in  immune cell  type definitions
between  CIBERSORT  and  xCell,  the  xCell-based
results  further  supported  our  findings,  revealing  a
significant  increase  in  M2  macrophages  and  a
decrease in M1 macrophages within the ROM group
(Supplementary  Figure  S5).  Notably,  the  macro-
CCL18  population,  identified  in  this  study,
corresponded  to  the  M2  macrophage  phenotype,
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thereby  providing  biological  validation  from  an
independent  analytical  perspective.  Using  the
WMCM  method,  we  extracted  11  texture  features
from  the  pathological  images  in  the  TCGA  external
validation  cohort  and  examined  their  associations
with  patient  prognosis.  Significant  differences  (P <
0.05)  were  observed  in  several  texture  parameters,
including  SGSDA,  SGBDA,  GLA,  Regulation,  Contrast,
IDM,  and  Entropy,  between  the  ROM  and  nROM
groups (Table S2).

Finally,  Pearson  correlation  analysis  was
performed  between  immune  cell  types  exhibiting
significant  group  differences  and  the  extracted
image  texture  features.  GLMSE,  Contrast,  and
Entropy  were  significantly  correlated  with
quiescent_migDC  content,  whereas  SGSDA  was
significantly  correlated  with  macro-CCL18  levels
(Figure  6C).  Collectively,  these  findings  suggest  that
pathological  image-based  predictions  of  recurrence
and  metastasis  in  early-stage  TNBC  may  partially
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reflect  heterogeneity  in  the  tumor  immune
microenvironment.

 Pathological  Image-based  Prediction  of  Recurrence
and  Metastasis  in  Early-stage  TNBC  May  be
Associated with Differential Gene Expression

To further elucidate the biological interpretability
of  pathological  image-based  prognostic  predictions
for  TNBC,  we  conducted  an  exploratory  analysis
examining  the  relationship  between  image-derived
texture features and gene expression profiles. mRNA
sequencing  data  were  obtained  from  the  TCGA
database,  and  differential  expression  analysis
was  performed  using  the  DESeq2  package  in  R
(Figure 7A).  A total  of  1,587 differentially  expressed
genes (DEGs) were identified between patients with
ROM  and  nROM  (P <  0.05),  comprising  763
upregulated and 824 downregulated genes.

Several  genes  associated  with  poor  prognosis
were  significantly  upregulated  in  the  ROM  group,
including MMP28 (involved  in  aminoglycan
biosynthesis)  as  well  as VEGFC, KRT13, KRT10,  and
HES5 (markers  of  epidermal  differentiation).  Given
the limited evidence regardingreports of HES5 in the
TNBC  literature,  we  performed  external  validation
using two independent TNBC datasets from the GEO
database,  both  of  which  confirmed  a  consistent
trend of upregulation (Supplementary Figure S6). All
identified  DEGs  were  subjected  to  GO  functional
enrichment  analysis,  which  revealed  that  genes
upregulated  in  the  ROM  group  were  primarily
enriched in  pathways related to extracellular  matrix
organization,  extracellular  structure  formation,
epidermal  differentiation,  synaptic  signaling,  and
aminoglycan  biosynthesis  (Figure  7B,  C).  We  then
examined  the  correlations  between  image-derived
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Figure 7. Interaction analysis between pathological image texture features and tumor immune cell composition.
(A)  Immune  cell  proportions  inferred  using  the  CIBERSORT  deconvolution  algorithm;  (B)  Differential
analysis  of  immune cell  composition between patients  with different  prognostic  outcomes;  (C)  Pearson
correlation analysis between image texture features and significantly altered immune cell types.
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texture  features  and  the  expression  of  key
upregulated genes. Notably, the expression levels of
VEGFC, HES5,  and MMP28 in  ROM patients  showed
significant  associations  with  specific  texture
features,  including  GLA,  Regulation,  Contrast,  IDM,
and Entropy (Figure 7D).

Collectively,  these  findings  suggest  that
pathological  image-based  predictions  of  recurrence
and  metastasis  in  early-stage  TNBC  may  reflect
underlying  transcriptomic  alterations,  particularly
those related to extracellular remodeling and tumor
progression.

 DISCUSSION

TNBC  is  a  highly  aggressive  subtype  of  breast
cancer, characterized by the absence of well-defined
biomarkers  and  effective  targeted  therapies[24].
Compared with other subtypes, TNBC exhibits earlier
relapse  and  a  poorer  prognosis[3].  Consequently,
accurate  prognostic  prediction  is  essential  for
guiding  clinical  decision-making  and  optimizing
treatment  strategies.  H&E-stained  pathological
sections  remain  a  cornerstone  in  routine  clinical
diagnostics  due  to  their  low  cost  and  accessibility.
With  the  rapid  integration  of  deep  learning  into
digital pathology, several studies have demonstrated
its  potential  for  predicting  cancer  prognosis  using
histopathological  WSIs[7-8].  However,  because  of  the
relatively  low  incidence  of  TNBC,  large-scale  image-
based  prognostic  modeling  studies  in  this  subtype
remain limited.

In  this  study,  we  retrospectively  analyzed  340
postoperative  H&E  stained  WSIs  from  318  patients
with  early-stage  TNBC  and  well-documented
recurrence/metastasis  outcomes  treated  at  the
Cancer  Hospital,  Chinese  Academy  of  Medical
Sciences.  A  deep  learning-based  prognostic
prediction  model  was  developed  using  five-fold
cross-validation,  achieving  an  AUC  of  0.805  in  the
training  cohort.  When  validated  on  an  independent
external  validation  cohort  from  the  TCGA  database,
the  model  achieved  an  AUC  of  0.858,  indicating
strong  generalizability.  To  further  improve  model
performance  and  interpretability,  we  incorporated
clinical  variables  into  the  framework.  Differential
analysis  identified  five  clinicopathological
features—age,  number  of  axillary  lymph  node
metastases,  pT  stage,  pN  stage,  and  TNM
stage—that  were  significantly  associated  with
recurrence/metastasis. These features are consistent
with  previously  reported  prognostic  indicators  in
TNBC,  thereby  supporting  the  reliability  of  our

dataset.  The  fusion  of  deep  learning  features  from
pathological images with clinicopathological features
improved  model  performance,  achieving  an  AUC  of
0.86  in  the  training  cohort.  This  confirms  that
multimodal  integration  reduces  data  noise  and
enhances prediction accuracy.

Deep  learning  offers  a  significant  advantage  by
automatically  learning  abstract  feature
representations  through  multi-layer  neural
networks,  often  outperforming  traditional  omics-
based  methods  such  as  radiomics  or  pathomics[25].
However,  its  complex  architecture  presents
significant  challenges  to  interpretability—a  critical
requirement  in  clinical  applications.  Despite  recent
advancements,  few  studies  have  systematically
investigated  the  interpretability  of  deep  learning
models in TNBC. In this study, Grad-CAM was used to
visualize  attention  regions  within  WSIs,  revealing
prognostically relevant areas marked in red and less
relevant  regions  in  blue.  These  maps  demonstrated
that  the  model  appropriately  weighted  different
tumor regions, regardless of recurrence status.

Using  HoVer-Net,  we  further  segmented  five
distinct  cell  types  within  tumor  regions—tumor,
lymphocytes,  stromal,  epithelial,  and  necrotic
cells—and compared their  proportions between the
ROM  and  nROM  groups.  We  found  that  non-
recurrent  patients  exhibited  significantly  higher
lymphocyte  infiltration,  which  is  consistent  with
meta-analyses  showing  that  increased  numbers  of
tumor-infiltrating  lymphocytes  are  associated  with
improved survival in TNBC[26-28].  Furthermore, within
the  prognostically  relevant  tumor  regions,  we
compared  the  lymphocyte  content  with  that  of  the
tumor,  epithelial,  stromal,  and  necrotic  cells.  The
results  showed  that  lymphocyte-to-other-cell  ratios
were  significantly  higher  in  patients  without
recurrence than in those with recurrence, regardless
of the reference cell type (Supplementary Figure S4).
In  TNBC,  tumor-infiltrating  lymphocytes  produce
anti-tumor  cytokines  and  cytotoxic  molecules  (e.g.,
IFN-γ,  TNF-α,  perforin,  granzyme)  that  directly  kill
tumor cells and activate immune responses. Some of
these  lymphocytes  differentiate  into  memory  cells,
enabling  the  rapid  recognition  of  recurrent  tumor
cells through cytokines and chemokines such as IL-12
and  CXCL9.  These  mechanisms  foster  a  more
immunoreactive  tumor  microenvironment  and  help
prevent  recurrence[29-31].  Our  findings  support  this
hypothesis.  Collectively,  these  results  support  that
cell  composition  within  pathological  images  is
associated  with  clinical  outcomes  in  early-stage
TNBC.
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The  tumor  immune  microenvironment  plays  a
critical  role  in  tumor  progression,  angiogenesis,
immune  evasion,  and  treatment  resistance[32].
Cellular composition within the microenvironment is
partially  reflected  in  H&E-stained  images,  providing
valuable  prognostic  information.  We  used  mRNA
sequencing  data  from  the  TCGA  cohort  and
CIBERSORT  algorithm  to  infer  immune  cell
composition.  Some  of  these  results  were  further
validated  using  the  xCell  algorithm  (Supplementary
Figure S5). Differential analysis revealed that macro-
CCL18  and  quiescent_migDC  cells  were  significantly
enriched in recurrent cases. Macro-CCL18, a subtype
of  M2-type  tumor-associated  macrophages  (TAMs),
secretes CCL18 chemokines that promote metastasis
and  angiogenesis  by  interacting  with  PITPNM3,
contributing  to  poor  prognosis  in  various  cancers,
including  esophageal  cancer[33-34].  IL-1α,  through
activation  of  downstream  signaling via the  IL-
1R1/IRAK4  axis,  can  induce  M2-like  polarization  of
TAMs,  resulting  in  significant  enrichment  of  M2-like
TAMs  around  tumor  cells.  This,  in  turn,  activates
three  key  downstream  signaling  pathways:  ERK1/2-
ZEB1-VIM,  MKK4-JNK-c-Jun,  and  NF-κB,  which
collectively  enhance  TNBC  cell  survival,  migration,
and  macrophage  recruitment[35].  Moreover,  studies
have  demonstrated  that  in  TNBC,  a  subtype  with
poor prognosis,  the non-coding RNA circ-0100519 is
highly  expressed  and  can  be  transferred  into  TAMs
via  exosomes.  Upon  internalization,  circ-0100519
promotes  M2  macrophage  polarization  through  the
circ-0100519/USP7/NRF2  axis,  thereby  facilitating
the  in  vivo  proliferation  and  metastasis  of  TNBC
cells[36].  Although  quiescent_  migDCs  have  been
linked to T cell activation and anti-tumor immunity in
head  and  neck  cancers[37],  our  findings  suggest  a
potential  association  with  poor  prognosis  in  TNBC,
which  warrants  further  functional  validation.  These
immune-related  findings  provide  mechanistic
support for image-based prognostic modeling.

Previous studies have shown that image-derived
texture features can predict the prognosis of various
tumors,  including  non-small  cell  lung  cancer,  gastric
cancer,  and  HER2-positive  breast  cancer[23,38-39].
Consistent  with  these  findings,  our  study  identified
several  texture  features,  such  as  SGSDA,  Contrast,
and Entropy,  that  were  significantly  associated  with
TNBC  prognosis  (Supplementary  Table  S2).  This
approach  of  converting  image  data  into  structured
information not  only  facilitates  prognostic  modeling
but  also  enhances  the  interpretability  of  deep
learning  model  outputs.  However,  the  biological
mechanisms  underlying  these  associations  remain

unknown.
In the present study, we aimed to interpret these

correlations  from  the  perspective  of  immune  cell
infiltration  and  its  physical  impact  on  the  tumor
microarchitecture.  Previous  research  has
demonstrated that texture-based image analysis can
identify  immune  cell  phenotypes  and  predict
immune  profiles  (IP)  and  overall  survival  (OS)  in
patients  with  intrahepatic  cholangiocarcinoma
(ICC)[40]. Upon activation, macrophages and dendritic
cells (DCs) undergo morphological changes, including
alterations  in  cell  borders,  surface  texture,
intracellular  content,  and  spatial  distribution[41-43].
Activated  macrophages,  for  instance,  exhibit
enlarged  cell  bodies  with  numerous  pseudopodia
and  roughened  surfaces,  which  enhance  light
scattering  and  appear  with  locally  increased
brightness  under  microscopy[41].  In  H&E-stained
slides,  these  cells  contain  abundant  lysosomes  and
phagocytic  vesicles,  which  stain  more  intensely  due
to  increased  eosinophilia,  resulting  in  high-intensity
pixel regions in grayscale images and, consequently,
thicker textures captured by elevated SGSDA.

Similarly,  when  immune  cells  aggregate  or
infiltrate  the  periphery  of  tumor  nests,  the
morphological  and  staining  contrast  between  the
immune  and  tumor  cells  generates  sharper  local
boundaries[42].  This,  in  turn,  increases  the  grayscale
variation  between  adjacent  regions,  corresponding
to higher Contrast values.  Furthermore, mature DCs
stimulated  by  tumor  antigens  adopt  a  spindle-
shaped  morphology  with  smooth  surfaces,  fewer
cytoplasmic  vacuoles,  and  more  uniform
distribution.  In  contrast,  immature  DCs  exhibit
irregular  shapes  and  greater  grayscale  variability[43].
These  morphological  differences  result  in  localized
image  homogenization  and  a  reduction  in  overall
grayscale complexity  and dispersion,  as  reflected by
the  decreased  GLMSE  and  Entropy  values.  Our
findings  support  the  plausibility  of  these
associations.

Collectively,  these  specific  texture  features  may
sensitively  capture  the  morphological  changes
induced  by  immune  infiltration,  including  increased
tissue  heterogeneity,  more  frequent  interfaces,  and
greater  spatial  complexity.  Emphasizing  that  this
hypothesis  is  based  on  correlation  analysis  and
established  biological  knowledge  is  crucial.  Texture
patterns  in  H&E-stained  images  are  indirect,
integrative reflections of downstream morphological
alterations  caused  by  immune  activity,  rather  than
direct  markers  of  immune  cells.  To  further  validate
and  elucidate  the  causality  of  these  mechanisms,
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future  studies,  including  spatial  co-localization
analysis  using  multiplex  immunofluorescence,  are
warranted.  These  results  further  enhance  the
interpretability of our model by linking specific visual
features  to  the  composition  of  the  immune
microenvironment.

Gene  expression  profiles  fundamentally  govern
cellular  phenotypes  and  shape  tissue-level
morphological  patterns.  To  elucidate  the  molecular
basis  underlying  our  image-based  predictions,  we
performed  differential  gene  expression  analysis
using  the  TCGA-TNBC  cohort.  DESeq2  identified
1,587 DEGs between patients with ROM and nROM.
Among  these, MMP28, VEGFC,  and HES5 were
significantly  upregulated  in  the  ROM  group,
suggesting  their  potential  involvement  in  disease
progression. VEGFC,  the  first  lymphangiogenic
member  of  the  VEGF  family,  plays  a  central  role  in
lymphatic  endothelial  cell  proliferation,  migration,
and lymphatic sinus formation[44].  Its overexpression
has  been  documented  in  multiple  malignancies,
including  TNBC,  and  is  strongly  associated  with
lymphatic dissemination and adverse prognosis[45-47].
In  TNBC,  polarized  M2-like  TAMs  secrete  VEGF-C,
which  induces  the  expression  of PCAT6,
subsequently  activating  the  Akt/mTOR  signaling
cascade  and  upregulating  VEGFR2  expression.  This
axis  promotes  tumor  cell  proliferation,  invasion,
epithelial-mesenchymal  transition  (EMT),  and
angiogenesis,  ultimately  facilitating  tumor
progression  and  poor  clinical  outcomes[48].  Matrix
metalloproteinases  (MMPs)  play  a  pivotal  role  in
extracellular  matrix  remodeling  and  tumor
progression. MMP28,  in  particular,  has  been
implicated  in  enhancing  the  secretion  of  pro-
tumorigenic  cytokines  such  as  IL-8  and  VEGFA  via
MAPK/JNK  pathway  activation[49].  These  cytokines
function  not  only  as  chemotactic  agents  but  also  as
key  mediators  of  M2  TAM  polarization,  partly
through  the  modulation  of  TAM  amino  acid
metabolism.  Furthermore, MMP28 interacts  with
ANXA2 to facilitate M2 TAM recruitment[49]. In TNBC,
M2  TAMs  further  interact  with  the  PI3K/AKT/IL-
34/CSF1R  signaling  axis,  which  contributes  to  the
establishment  of  an  immunosuppressive  tumor
microenvironment  that  promotes  tumor  cell
proliferation  and  metastatic  dissemination[50].  Our
study  supports  these  mechanisms  by  identifying  a
marked  elevation  in  the  macro-CCL18-positive  M2
TAM  subset  in  patients  with  ROM,  which  further
reinforces the reliability and clinical relevance of our
findings.  The  HES5  transcription  factor,  which
regulates  cellular  differentiation,  has  been primarily

studied  in  gliomas,  with  limited  investigation  in
breast cancer[51]. To further explore its role in TNBC,
we  conducted  external  validation  using  publicly
available  datasets  from  the  GEO  database
(Supplementary Figure S6).  In the GSE21653 cohort,
HES5 expression was significantly upregulated in the
ROM  group,  while  a  non-significant  upward  trend
was  observed in  the  GSE58812 cohort,  suggesting  a
context-dependent  relevance  that  warrants  further
functional  investigation.  Finally,  correlation  analysis
between key DEGs and quantitative imaging features
revealed  that  grayscale  complexity,  sharpness,
depth,  and  brightness  were  positively  associated
with  high  expression  levels  of  VEGFC,  HES5,  and
MMP28.  These  findings  suggest  that  image-derived
texture  patterns  may  reflect  underlying
transcriptomic  alterations,  thereby  reinforcing  the
biological  interpretability  of  our  deep  learning
model.

Despite these encouraging results, this study has
several  limitations.  First,  as  a  retrospective  analysis,
selection  bias  may  be  a  factor;  therefore,  future
prospective studies with larger cohorts are necessary
to  validate  our  findings.  Second,  the  biological
interpretations  in  this  study  are  primarily  based  on
transcriptomic  data,  and  further  functional
experiments  are  required to  validate  key  genes  and
clarify  the  causal  pathways.  Additionally,  texture
features  extracted  from  H&E-stained  images  likely
reflect  indirect  morphological  changes  driven  by
immune  activity,  rather  than  directly  identifying
immune  cell  subtypes.  The  future  integration  of
spatial  transcriptomics  or  multiplex
immunofluorescence  will  be  crucial  for  confirming
these  associations  and  further  uncovering  the
underlying mechanisms.

 CONCLUSION

In this study, we developed and validated a deep
learning–based  prognostic  prediction  model  for
early-stage  TNBC  using  H&E-stained  pathological
WSIs.  The model demonstrated robust performance
in both internal and external cohorts and was further
strengthened  by  integrating  clinicopathological
features. To address the “black box” nature of deep
learning,  we  conducted  a  multilevel  interpretability
analysis.  Through  visualization  techniques,  immune
cell  profiling,  texture  feature  extraction,  and
transcriptomic  correlation,  we  revealed  that
pathological images are biologically linked to specific
cellular  and  molecular  characteristics  of  the  tumor
microenvironment.
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Our  findings  highlight  that  image-derived
features  reflect  immune  cell  composition,
particularly  the  macro-CCL18  and  quiescent_migDC
cell  subsets,  as  well  as  the  expression  of  poor
prognostic genes, such as VEGFC, MMP28, and HES5.
These insights provide a mechanistic explanation for
the  predictive  capability  of  pathological  images  and
establish  a  foundation  for  biologically  interpretable
AI  models  of  TNBC.  While  further  experimental
validation is warranted, our study demonstrates the
feasibility and clinical potential of using pathological
images  to  predict  the  recurrence  and  metastasis  of
early-stage  TNBC.  This  approach  offers  a  cost-
effective,  scalable,  and  biologically  meaningful  tool
to  support  personalized  treatment  planning  and
precision oncology.
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