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Clean air is fundamental to human health.
Approximately 99% of the global population has
been exposed to concentrations higher than the
World Health Organization’s recommendations.
Moreover, adverse health effects have been
observed at much lower pollution levels than
previously studied. China has experienced periods of
severe air pollution over the past few decades. To
improve air quality and safeguard public health, the
government has implemented several progressively
tightened policies. Emission control policies were
first proposed in 2005. China then issued the Air
Pollution Prevention and Control Action Plan from
2013 to 2017, followed by the Three-Year Action
Plan for Winning the Blue Sky Defense Battle from
2018 to 2020. The Air Quality Continuous
Improvement Action Plan was launched in 2023.
With continuous and deepening efforts over the past
two decades, the air quality in China has significantly
improved. The integrated population-weighted
exposure to PM, 5 decreased by 47% from 2005 (180
ng/m’) to 2015 (96 pug/m’)™. Additionally, the annual
Air Quality Index showed a decline in its average
value from 94 in 2014 to 67 in 2020 However, new
epidemiological studies in high-income countries
(Canada, the United States, and Europe) with
relatively clean air have indicated that even low-level
air pollution exposure has several adverse health
effects. Children may face greater exposure to air
pollution because they have higher respiratory rates
and breathe more air per unit of body mass than
adults. Heavy metals and other materials attached to
air pollution particles enter the alveoli via the
respiratory tract and then enter the cells through the
bloodstream. These substances may disrupt time-
dependent  programming during the early
developmental stages, potentially increasing
children’s disease risk. Children are particularly
vulnerable to the adverse effects of air pollution
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owing to their developing bodies and
underdeveloped immunological and respiratory
systems. Consequently, children are at an elevated
risk of pollution-related diseases because even
extremely low-dose exposures to pollutants during
critical windows of vulnerability can lead to health
issues in childhood and throughout their lifespan.

Dyslipidemia, which refers to an abnormal blood
lipid profile, can lead to cardiovascular diseases. It
begins in childhood and progresses gradually into
adulthood. Previous epidemiological studies have
revealed that the prevalence rates of
hypercholesterolemia, hypertriglyceridemia,
hypoalphalipoproteinemia, and
hyperbetalipoproteinemia in Chinese children and
adolescents are 5.0%, 4.6%, 15.4%, and 5.9%,
respectiverB]. Emerging epidemiological evidence
suggests that exposure to air pollution disrupts
blood lipid homeostasis, leading to dyslipidemia.
Given the high incidence of dyslipidemia in China,
identifying potential risk factors and implementing
measures to prevent or reduce its incidence are
urgently needed. Therefore, it is necessary to
evaluate the joint effects of air pollution exposure on
dyslipidemia and identify the most hazardous
constituents.

The present study examined data from the
Environmental Exposure and Children’s Health
Study, which was initiated and organized by the
National Institute of Environmental Health, Chinese
Center for Disease Control and Prevention. Between
April and July 2024, we implemented a multistage
random sampling strategy to recruit participants
from three cities (Tianjin, Fuyang, and Ma’anshan).
Six primary schools were selected by computer and
stratified by school district and school size. All
students from the selected grades were invited to
participate. In all, 614 participants were included
(Supplementary Figure S1). This work was approved
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by the Ethical Review Committee of the National
Institute of Environmental Health, Chinese Center
for Disease Control and Prevention on March 24,
2024. All participants provided written informed
consent.

The annual average concentrations of air
pollutants (PM, s, PM;o, O3, NO,, and SO,) in 2023
were estimated based on each participant’s
geocoded residential address. High-quality and high-
resolution air pollutant data were sourced from the
China High Air Pollutants database (https://weijing-
rs.github.io/product.html). Total cholesterol (TC),
triglycerides (TG), high-density lipoprotein
cholesterol (HDL-C), and low-density lipoprotein
cholesterol (LDL-C) were quantified at the ShangHai
DIAN Medical Laboratory using the Hitachi
LABOSPECT 008a automatic analyzer (Hitachi High-
Tech Corporation, Tokyo, Japan) with a standard
procedure. According to the Expert Consensus on
the Prevention and Treatment of Dyslipidemia in
Children and Adolescents”, hypercholesterolemia
was defined a TC > 520 mmol/L;
hypertriglyceridemia was defined as TG > 1.76
mmol/L; hypoalphalipoproteinemia was defined as
HDL-C £ 1.04 mmol/L; and hyperbetalipoproteinemia
was defined as LDL-C > 3.38 mmol/L. Dyslipidemia is
considered when any single indicator is at an
abnormal level.

Logistic regression models were used to fit the
association between exposure to air pollutants and
dyslipidemia. The joint effect of the five air
pollutants was evaluated using a quantile-based g-
computation (gg-computation) approach, which is a
generalization and extension of the weighted
quantile sum (WQS) regression. All the main
analyses were adjusted for potential confounding
factors according to a directed acyclic graph
(Supplementary Figure S2). All analyses were
performed with IBM SPSS (version 23.0) and R
statistical software (version 3.5.1, package
‘ggcomp’). A two-tailed value of P < 0.05 was
considered statistically significant.

Supplementary Table S1 shows the participants’
demographic characteristics. Their mean (standard
deviation) age and body mass index were 11.22
(1.55) years and 19.20 (4.02) kg/m’, respectively.
Approximately 14.98% (92/614) children were
diagnosed with dyslipidemia; 10.59% (65/614),
4.07% (25/614) and 0.49% (3/614) of the
participants had one, two, or three abnormal blood
lipid indicators, respectively (Figure 1). The results
revealed that 4.56% of these individuals exhibited
two or three abnormal blood lipid indicators. The

overall prevalence of dyslipidemia is consistent with
a previous cross-sectional study in China, which
reported a prevalence of 15.4% for
hypoalphaIipoproteinemiam. However, this
prevalence was lower than that reported in the US
(19.2%)[4]. The incidence rates of dyslipidemia vary
across these limited studies, which could be partially
explained by the differences in the survey year,
genetic background, sample size, inclusion criteria,
and dietary structure. These findings suggest that
the prevention and control of dyslipidemia in
children in China present a crucial challenge.
However, the necessity of the preventive screening
of children’s lipid levels remains controversial. The
National Heart, Lung, and Blood Institute advises
universal lipid screening for children aged 9-11 years
and adolescents aged 17-21 years, and the American
Heart Association recommends selective screeningm.
By contrast, the US Preventive Services Task Force
maintains that no direct evidence has been
identified for the benefits of pediatric lipid
screening[‘”. Therefore, a large-scale randomized
clinical intervention trial may be required to
determine whether widespread screening and
treatment for early childhood lipid disorders should
be implemented.

Supplementary Table S2 presents the air
pollutant concentrations of 2023. Spearman’s
correlation indicated that the air pollutants were
highly positively correlated (r = 0.463—-0.967). Air
pollutant exposure during early life has often been
examined in previous studies as a potential
contributor to the etiology of dyslipidemia. We
found that each 1 pug/m’ increase in PM, s, PM,, and
SO, was associated with elevated odds of
dyslipidemia, with adjusted odds ratios of 1.08 (95%
confidence interval [C/]: 1.02 to 1.14), 1.03 (95% CI:
1.00 to 1.05), and 1.31 (95% CI: 1.04 to 1.58),
respectively. Similarly, exposure to these pollutants
and NO, was significantly associated with an
increased  risk of  hypoalphalipoproteinemia.
Specifically, per 1 ug/m3 increment, PM, 5, PMy,,
NO,, and SO, increased the risk of
hypoalphalipoproteinemia 1.19-fold (95% C/: 1.07 to
1.30), 1.06-fold (95% CI: 1.02 to 1.10), 1.09-fold (95%
Cl:1.04 to 1.14), and 2.07-fold (95% CI: 1.61 to 2.52),
respectively. However, no significant associations
were observed between these air pollutants and
other lipid abnormalities, including
hypercholesterolemia, hypertriglyceridemia, and
hyperbetalipoproteinemia (Table 1). A panel study in
Guangzhou, China, found that exposure to different
PM size fractions was associated with decreased
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HDL-C and ApoAl levels and increased ApoB[G].
Among middle-aged American women, the annual
average PM, s levels were associated with lower
HDL-C but not with TC, TG, and LDL-C levels”.
Numerous studies have investigated the relationship
between air pollution and blood lipid profiles;
however, the findings remain inconsistent. A cross-
sectional survey in 2013 with 12,814 children aged
7-18 years showed positive associations of PM;,
PM, s, PM;(, and NO, with TC levels and the risk of
hypercholesterolemia; however, no associations
were found for air pollution and other blood IipidsB].
This finding is consistent with the results that
reported higher PM; and PM, 5 concentrations with
higher odds for hypercholesterolemia,
hypoalphalipoproteinemia, and
hyperbetalipoproteinemia[sl. The potential sources
of this heterogeneity included variations in study
design, differential exposure levels to air pollution,
population genetic backgrounds, distinct statistical
approaches and analytical models, and differences in
exposure duration. Furthermore, residual
confounding factors, which are an
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30 A

20 A

Number of overlaps

10 -

O 4
18 LDL.higher.than.3.38

31 N HpL.lower.than.1.04
35 TC.higher.than.5.20

39 TG.higher.than.1.76 o

40 30 20 100 O
Number of dyslipidemia

limitation of observational studies, likely contributed
to these variations. Additional influential factors may
include population demographic and clinical
characteristics (particularly age, racial or ethnic
composition, and baseline health status),
fundamental differences in study design (cross-
sectional or longitudinal), unmeasured confounders
such as physical activity patterns and indoor
environmental exposures, geographical variations in
pollutant mixtures, and methodological differences
in exposure assessment techniques. Furthermore,
variations in pollutant compositions across regions
and differences in detection methodologies may play
arole.

O3 is one of the most toxic and ubiquitous air
pollutants. Few studies have investigated the
association between O3 and blood lipid
concentrations, and the results have been
heterogeneous. Our study reported that a 1 pg/m’
increase in O3 was associated with an odds ratio of
1.24 (95% CI: 1.01 to 1.47) for developing
dyslipidemia. Exposure to Oj increased the risk of
hyperbetalipoproteinemia 1.48-fold (95% CI: 1.10 to

Figure 1. Dyslipidemia distribution illustrated by Venn diagram.
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1.86) (Table 1). Among Korean soldiers, O; led to
lower HDL-C and higher TC levels only among
individuals with a body mass index > 25.0 kg/mz[g].
Another cross-sectional study from the 33
Communities Chinese Health Study reported that
higher O; concentrations were significantly
associated with elevated TG and HDL-C levels and
reduced TC and LDL-C levels®. This study also found
that increased O3 exposure was associated with
higher odds of hypertriglyceridemia. The specific
reasons for the inconsistent results across studies on
O3 exposure, blood lipid profiles, and dyslipidemia
remain unclear.

This study is one of the first studies to utilize a
gg-computation approach to explore the joint
effect of air pollutants and dyslipidemia in primary
school children. In the present study, each quintile
increase in the mixture exposure was associated
with an increased hazard ratio (HR) of 1.29 (95% CI:
1.00 to 1.67) in individuals with dyslipidemia in the
main model (Table 2). Moreover, the large weight
indices of 0.57 and 0.43 for PM;, and SO,,
respectively, indicated their positive contributions
to the adverse effect of mixture exposure.
Conversely, the negative indices of PM,;, O3, and
NO, suggested that they influenced the overall
association by diminishing the contribution of other
toxic components (Supplementary Figure S3). Each
quintile increase in the mixture exposure was
associated with an increased HR of 2.19 (95% CI:
1.39 to 3.43) in individuals with
hypoalphalipoproteinemia in the main model.
Specifically, SO,, PM, 5 and PM;, showed a positive
direction, with weight indices of 0.49, 0.35, and
0.16, respectively. By contrast, O; and NO,
demonstrated a negative direction, with weight
indices of 0.56 and 0.44, respectively (Table 2). The
weight indices indicated that PM,;, and SO,
positively contributed to the adverse effect of
mixture exposure. A  multi-city study in
southwestern China with 67,015 participants used a
WQS regression model to evaluate the joint effects
of long-term exposure to PM,s constituent
exposures (black carbon, sea salt, sulfate,
ammonium, nitrate, soil particles, and organic
matter) on dyslipidemia™®. The study found that
long-term exposure to ambient PM, s constituents
was positively associated with an increased risk of
dyslipidemia in adults aged 30-79 years, with
nitrate being the most crucial constituent
(weighted at 0.387). The WQS models identified
nitrate, sulfate, soil particles, and organic matter as
the constituents with the largest weights.

Additionally, the qg-computation estimates showed
that nitrate was the constituent with the largest
weight and positively contributed to the adverse
effect. Although the components of air pollution
examined in the abovementioned study differed,
the findings on the joint effects of mixture exposure
broadly support existing research linking air
pollutants with dyslipidemia. They indicate that
reducing exposure to air pollutants, especially those
with the highest contributions, could help alleviate
the disease burden attributed to air pollutant-
related dyslipidemia.

This study had several notable strengths. For the
first time, we evaluated the joint effects of co-
exposure to multiple highly correlated air pollutants
on dyslipidemia in children, identifying PM,, and SO,
as the most critical components. The findings
provide crucial insights into the health impact on
primary school students in a developing country.
Moreover, we assessed the joint effects of mixed
exposure and compared these results with those
from single-pollutant models. The consistent results
demonstrated the robustness and reliability of our
data. Furthermore, this study reported a high
prevalence of dyslipidemia in Chinese children,
offering recommendations for screening and
intervention strategies to mitigate possible harm in
later life.

However, our study had some limitations. First,
the cross-sectional design was less effective than
longitudinal  studies in  establishing  causal
relationships, and further longitudinal investigations
are required to confirm these associations. Second,
certain potential confounders, such as a family
history of  dyslipidemia,  medication use,
temperature, and humidity, were not controlled in
this study, which might have influenced the results.
Third, the exposure levels were assigned using data
based on the participants’” home addresses, omitting
the contribution of exposure in the indoor
environments at home and school where the
participants lived and studied. This approach may
underestimate the exposure for some individuals
and overestimate the exposure for others. More
sophisticated methods for accurate exposure
assessment are warranted in future studies.

In conclusion, our findings suggested that high
exposure to PM,s, PM;y O;, NO,, and SO, was
associated with an increased risk of dyslipidemia in
Chinese children. Notably, this effect persisted even
when the joint effects of mixed air pollutant
exposure were considered. Moreover, PM,4 and SO,
were the most critical constituents increasing the
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risk of dyslipidemia. Further studies are required to
provide more definitive evidence regarding the joint
effects of air pollution and their relationship with
dyslipidemia in children.
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