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Abstract

Objective　To assess the short-term lag effects of climate and air pollution on hospital admissions for
cardiovascular  and respiratory  diseases,  and to  develop deep learning-based models  for  daily  hospital
admission prediction.

Methods　A multi-city study was conducted in Tokyo’s 23 wards, Osaka City, and Nagoya City. Random
forest  models  were  employed  to  assess  the  synergistic  short-term  lag  effects  (lag0,  lag3,  and  lag7)  of
climate and air pollutants on hospitalization for five cardiovascular diseases (CVDs) and two respiratory
diseases  (RDs).  Furthermore,  we  developed  hybrid  deep  learning  models  that  integrated  an
autoencoder  (AE)  with  a  Long  Short-Term  Memory  network  (AE+LSTM)  to  predict  daily  hospital
admissions.

Results　On the day of exposure (lag0), air pollutants, particularly nitrogen oxides (NOx), exhibited the
strongest  influence  on  hospital  admissions  for  CVD  and  RD,  with  pronounced  effects  observed  for
hypertension (I10–I15), ischemic heart disease (I20), arterial and capillary diseases (I70–I79), and lower
respiratory  infections  (J20–J22  and  J40–J47).  At  longer  lags  (lag3  and  lag7),  temperature  and
precipitation were more influential  predictors.  The AE+LSTM model  outperformed the standard LSTM,
improving the prediction accuracy by 32.4% for RD in Osaka and 20.94% for CVD in Nagoya.

Conclusion　Our findings reveal the dynamic, time-varying health risks associated with environmental
exposure  and  demonstrate  the  utility  of  deep  learnings  in  predicting  short-term  hospital  admissions.
This framework can inform early warning systems, enhance healthcare resource allocation, and support
climate-adaptive public health strategies.
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 INTRODUCTION

C ardiovascular and respiratory diseases are
the  leading  causes  of  morbidity  and
mortality  worldwide.  Numerous

epidemiological  studies  have  demonstrated  that
risks  associated with these diseases  are increasingly
influenced by climate factors and air pollution[1–3]. In
real-world  contexts,  individuals  are  frequently
exposed to multiple environmental stressors such as
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extreme heat and air pollution, which may interact in
nonlinear  and  multiplicative  ways[4].  Although
extensive  studies  have  explored  the  health  impacts
of individual exposure, relatively few have examined
their  synergistic  effects.  Limited  evidence  from
Canada[5],  France[6],  and  Hungary[7] suggests  that
exposure  to  pollutants  and  meteorological
conditions  can  significantly  affect  hospitalization
risks.  However,  findings  across  studies  remain
inconsistent, partly due to heterogeneity in exposure
contexts and because conventional statistical models
often struggle to accommodate multicollinearity and
complex interactions.

Traditional models,  such as Generalized Additive
Models  (GAMs),  Generalized  Linear  Models  (GLMs),
and  Distributed  Lag  Nonlinear  Models  (DLNMs),  are
widely  used  in  environmental  epidemiology.
However,  these  models  are  often  constrained  by
their  inability  to  process  high-dimensional  data,
resolve  multicollinearity,  and  capture  intricate  and
dynamic  interactions  among  environmental
variables.[8] Machine learning (ML) offers a promising
alternative.  Most  ML  approaches  are  capable  of
modeling  nonlinear  associations,  handling  multilag
structures,  and  processing  large-scale  high-
dimensional datasets. By capturing the complex and
dynamic  relationships  among  multiple  exposures,
ML-based  models  enhance  the  ability  to  predict
diseases,  support  early  public  health  interventions,
and improve healthcare resource planning.[9] Among
these, deep learning models, particularly Long Short-
Term  Memory  (LSTM)  networks,  are  well-suited  for
modeling  temporal  dynamics[10],  effectively
accounting  for  both  lag  effects  and  long-term
dependencies under rapidly changing environmental
conditions[11,12].

In  Asia,  particularly  Japan,  research  on  the
synergistic  health impacts of  climate change and air
pollution  remains  limited,  despite  rising
environmental health risks[13]. Urban centers such as
Tokyo, Osaka, and Nagoya are characterized by high
population  densities,  rapid  aging,  frequent  extreme
weather  events  driven  by  the  Siberian  High  and
Pacific currents[14], and persistent air pollution. These
overlapping  vulnerabilities  make  Japan  a  critical
setting  for  investigating  the  combined  impact  of
environmental  exposure.  However,  most  studies
have  focused  on  either  temperature[15] or  air
pollutants[16,17] in  isolation.  Furthermore,  most  prior
research  has  emphasized  mortality  as  an  outcome,
whereas  hospital  admission,  an  earlier  and  more
actionable  health  outcome,  has  received
comparatively less attention.

This study investigated the cumulative synergistic
effects  of  climatic  conditions  and  air  pollution  on
hospital  admissions  for  cardiovascular  and
respiratory diseases across Tokyo’s 23 wards,  Osaka
City,  and  Nagoya  City.  Specifically,  we  (1)  applied
machine learning  models  to  quantify  the  synergistic
exposure effects of climate and air pollution, as well
as  their  relative contributions across  multiple  short-
term lag periods (lag0,  lag3,  and lag7);  and (2)  used
these  insights  to  inform  the  selection  of  key  input
and  lag  structures  for  hybrid  deep  learning  models,
with  the  goal  of  improving  the  accuracy  of  daily
hospital  admission  prediction.  By  advancing  both
exposure  assessment  and  predictive  modeling,  this
study  provides  a  more  comprehensive
understanding of environmental health risks in Japan
and  contributes  to  the  development  of  proactive
public  health  strategies  to  compound
climate–pollution stressors.

 MATERIALS AND METHODS

 Study Site

This  study  focused  on  three  major  metropolitan
areas  in  Japan:  Tokyo’s  23  wards,  Osaka  City,  and
Nagoya  City,  located  along  the  Pacific  coast  of
Honshu  Island  (34°–36°N),  within  the  humid
subtropical  climate  zone  (Köppen  Cfa),  which  is
characterized  by  hot,  humid  summers  and  mild,
relatively dry winters. These cities aret Japan’s most
densely  populated  and  industrially  active  regions
with  high  pollution  levels  and  pronounced  climate
variability.  Their  well-established  environmental
monitoring  infrastructure  provides  detailed  data  on
air  quality,  meteorological  conditions,  and  health
outcomes, making them ideal sites for examining the
health impacts of climate change and air pollution.

 Hospital Admission Data

Hospital  admission  data  for  the  period  from
January  1,  2017,  to  December  31,  2019,  were
obtained  from  the  JMDC  Claims  Database  As  the
largest  civilian  epidemiological  dataset  in  Japan,
which  compiled  anonymized  inpatient  and
outpatient  medical  claim  data  from  participating
health  insurance  associations,  covering
approximately  17  million  individuals.  The  dataset
included  standardized  information  on  inpatients,
outpatients,  pharmacies,  and  health  checkup
records. The variables extracted included the date of
visit,  location,  sex,  age,  number  of  first  visits,
hospital admissions, and follow-ups. Diagnoses were
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made  using  the  International  Classification  of
Diseases, 10th Revision (ICD-10). For this study, daily
counts  of  first  visits  and  admissions  were
aggregated,  and  disease  codes  corresponding  to
cardiovascular  diseases  (CVD:  I10–I15
[hypertension], I20 [ischemic heart disease], I21–I22
[acute  myocardial  infarction],  I25  [chronic  ischemic
heart  disease],  and  I70–I79  [arterial  and  capillary
diseases])  and  respiratory  diseases  (RD:  I26–I28
[pulmonary  heart  disease],  and  J20–J22;  J40–J47
[lower  respiratory  infections])  were  extracted  for
analysis.

 Meteorological and Air Pollution Data

The meteorological variables included daily mean
temperature,  wind  speed,  solar  insolation,
atmospheric  pressure,  relative  humidity,  and
precipitation,  all  of  which  were  obtained  from  the
Japan  Meteorological  Agency  (JMA).  The  JMA
measures  meteorological  conditions  using  its
automatic  weather  observation  system  (AMeDAS),
with observation stations are located approximately
every  21  km  throughout  the  country.  For  each  city,
daily  averages  were  calculated  across  all  available
observation  stations  to  represent  city-level
exposure.  Air  pollution  data  included  daily  mean
concentrations  of  nitrogen  oxides  (NOx),  carbon
monoxide  (CO),  photochemical  oxidants  (Ox),
suspended  particulate  matter  (SPM),  particulate
matter ≤2.5  μm  (PM2.5),  and  sulfur  dioxide  (SO2).
These  data  were  sourced  from  the  representative
environmental  agencies  of  Tokyo’s  23  wards  in
Osaka City  and Nagoya City.  For  each pollutant,  the
daily  mean  concentrations  were  computed  by

averaging  the  values  from  all  observation  stations:
28 stations in Tokyo, 26 in Osaka, and 18 in Nagoya.

 Random Forest Model

To quantify the short-term cumulative effects of
environmental  exposure  on  hospital  admission,
Random  Forest  regression  models
(RandomForestRegressor) were applied for the lag0,
lag3,  and  lag7  period.  Each  model  incorporated  all
environmental  variables  for  the  current  day,
previous  3  days,  and  the  previous  7  days.  Feature
importance  was  extracted  to  evaluate  the  relative
contribution  of  each  variable.  To  optimize  model
performance,  hyperparameters,  including  the
number  of  trees  (150,  200,  and  300),  maximum
features  per  split  (3  and  4),  and  minimum  samples
per split,  were tuned using a grid search to improve
model  accuracy  and  reduce  overfitting.  All  the
analyses  were  conducted  using  Python  3.12.7
(Python  Software  Foundation,  Wilmington,
Delaware, USA).

 Autoencoder  and  Long  Short-Term  Memory
(AE+LSTM) Hybrid Prediction Model

To  improve  the  prediction  of  daily  disease-
related  hospital  admissions,  a  hybrid  deep  learning
model  combining  an  autoencoder  (AE)  and  LSTM
network was developed. The encoder component of
the  AE  compresses  the  raw  input  data  into  latent
space  Z  (Figure  1),  which  is  then  reconstructed  by
the decoder. Through unsupervised learning, the AE
autonomously  extract  key  features  relevant  to
hospital  admission  prediction.  This  architecture
enables  dimensionality  reduction  and  denoising,
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allowing  the  model  to  focus  on  the  salient  patterns
in  the  data.  The  encoded  features  were  then  input
into  the  LSTM,  which  captured  the  long-term
dependencies for time-series prediction.

Hyperparameter  tuning  was  performed  for  both
the  model  components.  For  the  AE,  the  encoding
dimensions  (2–8),  batch  size  (32  and  64),  epochs
(200–400),  and  dropout  rate  (0.1–0.5)  were
optimized. For LSTM, the number of hidden layers (2
and  3),  time  steps  (3,  7,  and  14),  learning  rates
(0.001–0.01),  and  training  epochs  (200–1000)  were
used to improve the prediction performance.

To  ensure  an  adequate  sample  size,  disease-
related  hospital  admissions  were  grouped  into
two  categories  based  on  ICD-10  codes:  total
respiratory  and  total  cardiovascular  diseases.  This
aggregation  was  necessary  because  of  the  low  case
counts  for  certain  diseases  (e.g.,  I21,  I22,  and
I26–I28)  and  minimal  differences  in  feature
contributions  across  subgroups.  All  model
developments  and  evaluations  were  performed
using  Python  version  3.12.7.  (Python  Software
Foundation, Wilmington, DE, USA).

 Model Evaluation

Given the time-series nature of the dataset, a 10-
fold  cross-validation  was  employed  to  tune  the
model  hyperparameters.  The  model  performance
was evaluated using the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) as the primary
metrics using the following formula:

MAE = N

N

∑
i=

∣ŷi − yi∣

RMSE =

√√√√√√√⎷(N N

∑
i=

(yi − ŷi))
yi

ŷi
where i is  the ith  day,  represents  the  actual
hospitalization  for  each  disease,  and  represents
the predicted hospitalization for each disease.

 RESULTS

 Data Characteristics

Table 1 summarizes the disease-specific  hospital
admissions  in  the  three  study  cities  from  2017  to
2019. Lower respiratory infections (J20–J22; J40–J47)
accounted  for  the  highest  number  of  admissions,
exceeding  600,000,  followed  by  hypertension
(I10–I15).  Among  the  three  cities,  Tokyo’s  23  wards
recorded  the  highest  number  of  admissions,  with
more  than  37,000  for  cardiovascular  diseases  (CVD)
and 38,000 for respiratory diseases (RD). Nagoya City
ranked  second,  with  more  than  16,000  CVD
admissions  and  220,000  RD  admissions.  Osaka  City
reported the lowest figures with over 9,000 CVD and
67,000 RD cases.

According  to  Supplementary  Table  S1,  Nagoya
experienced  the  highest  daily  maximum
temperature  (33.31  °C),  solar  insolation  (31.17
MJ/m2), and wind speed (8.71 m/s), but also recored
the  lowest  minimum  temperature  (–1.10  °C).
Osaka  reported  the  highest  average  temperature
(17.33  °C),  slightly  above  Tokyo  (16.40  °C)  and
Nagoya  (16.66  °C).  Tokyo  exhibited  the  highest
average  atmospheric  pressure  (1010.90  hPa)  and
relative humidity (69.49%).

For air pollutants, Osaka had the highest average
concentration  of  NOx (0.029  ppm)  and  SO2 (0.004
ppm).  Tokyo reported the highest  CO concentration
(0.43  ppm),  followed  by  Nagoya  (0.34  ppm)  and
Osaka  (0.33  ppm).  Ox levels  were  similar  across  all
three  cities  (0.024–0.030  ppm).  PM2.5 and  SPM
showed  minimal  variation,  ranging  from  11.64  to
14.47 μg/m3 and 16.40 to 19.43 μg/m3, respectively.

 Interaction Between Climate and Air Pollution

Spearman’s  correlation  analysis  was  conducted
to  examine  the  relationships  between  climate  and
air  pollution  variables  across  the  three  cities
(Figure  2).  Among  the  climatic  variables,  humidity
and  precipitation  were  positively  correlated,
whereas  temperature  and  atmospheric  pressure
showed  a  consistent  inverse  relationship.  For
pollutants,  NOₓ,  CO,  and  SO2 were  strongly

 

Table 1. Hospitalization of each disease in Tokyo, Osaka, and Nagoya

Disease
code I10–I15 I20 I21–I22 I25 I70–I79 I26–I28 J20–J22;

J40–J47
Total
CVDs

Total
RDs

Tokyo 23,532 4,774 497 1,191 7,645 404 381,029 37,639 381,433

Osaka 6,126 1,312 112 343 1,825 61 67,666 9,718 67,727

Nagoya 10,666 2,570 208 330 2,512 365 224,207 16,286 224,572
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correlated  with  PM2.5 concentrations,  with  the
highest correlation observed between CO and PM2.5
in  Tokyo  (r =  0.64).  Temperature  consistently
showed  negative  correlations  with  SO2 and  NOₓ,
particularly in Osaka (r = –0.71 for SO2). Wind speed
was  positively  associated  with  Ox and  negatively
with NOₓ (r = –0.62 in Osaka).

Despite  these  general  patterns,  regional
differences  were  evident.  For  instance,  humidity
correlated  negatively  with  NOₓ in  Tokyo  but
positively  in  Nagoya  and  Osaka.  Similarly,
temperature  showed  a  moderate  positive
correlation  with  NOₓ in  Tokyo,  in  contrast  to  the
negative associations observed in other cities. These
findings  highlight  the  spatial  heterogeneity  in
climate–pollution  interactions,  which  are  likely
influenced  by  local  climatic,  topographic,  and
anthropogenic factors.

 Assessment of Short-term Cumulative Lag Effect

As  shown  in Figure  3 and  Supplementary  Table
S2,  on  the  day  of  exposure  (lag0),  air  pollution
exhibited  a  substantially  greater  total  feature
contribution  to  disease-related  hospital  admissions
than climate variables  in  all  three cities.  Among the
predictors,  NOx was  the  most  influential  with  a
feature contribution of 0.24 in Osaka, 0.22 in Tokyo,
and 0.21 in Nagoya. Its effect was particularly strong
on hypertension (I10–I15),  arterial  capillary diseases
(I70–I79),  and  lower  respiratory  infections  (J20–J22,
J40–J47).  PM2.5 and  SPM  also  showed  notable
contributions  to  cardiovascular-related  admissions,
especially  for  acute  myocardial  infarction  (I21–I22),
chronic ischemic heart disease (I25),  and pulmonary
heart  disease  (I26–I28).  Regional  variation  was
evident;  CO  contributed  more  in  Osaka  (0.16)  and

Nagoya  (0.15)  than  in  Tokyo  (0.11).  Similarly,  SO2
had  a  greater  influence  on  most  diseases  in  Osaka
and  Nagoya,  except  for  lower  respiratory  infections
(J20–J22  and  J40–J47),  in  which  its  effect  remained
consistently low.

At a 3-day lag (lag3), the contribution of most air
pollutions  declined,  whereas  the  importance  of
climate  variables  increased.  Temperature  became  a
more  significant  predictor  of  lower  respiratory  tract
infections  (J20–J22  and J40–J47),  with  contributions
reaching  0.09–0.11  across  cities.  In  contrast,  the
contribution  of  NOx declined  by  more  than  40%
across  all  diseases,  particularly  hypertension
(I10–I15)  and  respiratory  diseases.  CO  and  SO2 also
exhibited modest decreases in their contributions.

At 7-day (lag7), the combined contribution of the
climate  variables  approached  that  of  the  air
pollutants.  Precipitation  became  more  influential,
especially  in  admissions  for  acute  myocardial
infarction  (I21–I22)  and  chronic  ischemic  heart
disease  (I25),  with  contributions  reaching  0.06–0.08
in  Osaka  and  Nagoya.  Temperature  was  strongly
associated with respiratory admissions in both cities,
whereas  the  overall  contribution  of  air  pollution
diminished.

Comparing  the  feature  contributions  across  lag
days,  NOx showed  the  steepest  decline,  being
dominant  at  lag0  but  substantially  reduced  by  lag3
and  lag7.  Conversely,  temperature,  solar  insolation,
humidity,  and  atmospheric  pressure  increased
steadily  over  time,  with  their  combined
contributions  increasing  by  20%–30% from  lag0  to
lag7.  PM2.5 and  SPM  remained  relatively  stable
across  lag  periods  but  contributed  slightly  more  to
the acute disease categories. Notably, on the day of
exposure,  climatic  variables  contributed  more  to
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Figure 3. Feature  contribution  of  climate  and  air  pollution  factors  to  disease-related  hospitalizations
across  different  cumulative lag days in  Tokyo’s  23 wards,  Osaka,  and Nagoya.  Climate variables  include
temperature,  wind speed,  solar  insolation,  humidity,  atmospheric  pressure,  and precipitation,  while  air
pollutants  comprise  NOx,  SO2,  CO,  Ox,  PM2.5,  and  SPM.  Lag0,  lag3,  and  lag7,  respectively,  measure  the
immediate, 3-day delayed, and 7-day delayed impacts of these meteorological factors on disease-related
hospitalization.
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hospital  admissions  for  acute  myocardial  infarction
(I21–I22) than for other diseases, a pattern that was
reversed  at  lag3  when  air  pollution  became  the
dominant contributor. Across all lags, SPM and PM2.5
consistently contributed more to acute than chronic
disease admissions.

 Prediction Results and Model Comparison

The  AE+LSTM  model  consistently  outperformed
the standard LSTM model in predicting daily hospital
admissions in all three cities. As shown in Table 2, in
Nagoya,  AE+LSTM  achieved  the  largest  gains  for
cardiovascular admissions (CVD), reducing the RMSE
and  MAE  by  1.56  and  1.59,  corresponding  to

improvements  of  20.94% and  25.90%,  respectively.
The  model  also  performed  well  for  respiratory
diseases  (RD),  with  RMSE  and  MAE  reductions  of
25.02% and  22.61%,  respectively.  In  Osaka,  the
greatest  improvements  were  observed  for
respiratory  diseases,  where  the  RMSE  decreased
from  35.86  to  24.24  and  the  MAE  from  26.92  to
18.33,  representing  improvements  of  32.40% and
31.91%,  respectively.  Tokyo,  although  the
performance  gains  were  smaller,  AE+LSTM  still
showed consistent improvements: for cardiovascular
admissions,  RMSE  and  MAE  decreased  by  10.45%
and  9.77%,  respectively,  while  for  respiratory
diseases,  the  reductions  were  6.73% and  7.10%,

 

Table 2. Comparison of RMSE and MAE and relative improvement (%) of prediction performance of
LSTM and AE+LSTM

LSTM AE+LSTM Relative improvement

Tokyo Osaka Nagoya Tokyo Osaka Nagoya Tokyo Osaka Nagoya

RMSE
Total CVDs 13.78 4.68 7.45 12.34 4.47 5.89 10.45% 4.49% 20.94%

Total RDs 171.72 35.86 116.43 160.17 24.24 87.32 6.73% 32.40% 25.00%

MAE
Total CVDs 10.75 3.82 6.14 9.7 3.63 4.55 9.77% 4.97% 25.90%

Total RDs 129.60 26.92 85.33 120.40 18.33 66.01 7.10% 31.91% 22.64%

 

Disease: total hospitalization of CVDs

Number of patients: 16,286

Region: Nagoya

Disease: total hospitalization of RDs

Number of patients: 67,727

Region: Osaka
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Figure 4. Visualization  of  prediction  results  with  the  best  model  performance  in  testing  datasets.  The
vertical  axis  represents  the  number  of  daily  hospitalizations.  The  left  figure  represents  the  prediction
results of CVD-related hospitalization in Nagoya city, and the right figure illustrates the prediction results
of  RD-related  hospitalization  in  Osaka  city.  The  red  line  represnts  actual  hospitalization,  the  blue  line
represents the prediction value of the LSTM model, and the green line represents the prediction value of
the  AE+LSTM.  CVDs,  cardiovascular  diseases;  RDs,  two  respiratorydiseases;  RMSE,  Root  Mean  Square
Error; MAE, Mean Absolute Error; LSTM, Long Short Term Memory; AE, autoencoder.
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respectively. Figure 4 shows the prediction results of
the models.

 DISCUSSION

This  study  provides  evidence  of  the  differential
temporal  effects  of  climate  and  air  pollution
exposure  on  hospital  admissions  for  cardiovascular
and  respiratory  diseases  across  three  major  cities.
We  identified  distinct  lag  structures  for  the  climate
and  pollution  variables,  suggesting  divergent
biological mechanisms and risk dynamics.

The  observed  lag  effects  of  climatic  variables,
particularly  temperature  and  precipitation,  were
consistent  with  the  findings  of  prior  large-scale
epidemiological  studies.  For  instance,  multi-country
studies  have  shown  that  the  risk  of  cardiovascular
and respiratory  admissions  associated with  ambient
temperature  often  peaks  at  lag  days  5  to  10,
especially  under  extreme  heat  or  cold  events.[18–20]

Similarly,  extreme precipitation has been associated
with  an  increased  risk  of  myocardial  infarction  and
infectious  respiratory  diseases,  with  both  single-day
and  cumulative  lag  effects  extending  up  to  two
weeks.[21] These  effects  likely  reflect  the  complex
physiological  pathways  through  which  the  climate
influences  disease  onset  and  progression[22],
including changes in blood pressure, blood viscosity,
and  inflammatory  responses[23].  Therefore,  seasonal
changes,  temperature  fluctuations,  and  extreme
weather  events  are  widely  recognized as  triggers  of
delayed health effects[24].

In contrast, the effects of air pollution were most
pronounced  on  the  day  of  exposure  and  declined
rapidly  thereafter,  consistent  with  findings  from
time-series  and  controlled  exposure  studies[25].  NOx
has  emerged  as  a  dominant  short-term  contributor
to  both  cardiovascular  and  respiratory  admissions,
likely due to its role in inducing oxidative stress and
endothelial  dysfunction[26],  particularly  in  traffic-
dense  urban  environments.  In  addition,  the  (PM2.5
and  SPM)  demonstrated  more  sustained  effects
across  lag  periods.  This  supports  existing  evidence
that  fine  and  suspended  particulates  can  penetrate
deep into the lungs and enter the circulatory system,
leading  to  systemic  inflammation  and  coagulation
disturbances  that  persist  beyond  initial
exposure[27–29].

The  AE+LSTM  hybrid  model  consistently
outperformed  the  conventional  LSTM  model  in
predicting  admissions  across  all  the  cities.  Its
superior  performance  may  be  attributed  to  the
ability  of  the autoencoder to extract  latent  features

and  reduce  the  input  dimensionality,  thereby
enhancing  temporal  pattern  recognition[31].  This
finding  aligns  with  prior  studies  that  incorporated
autoencoder  modules  into  predictive  architectures
for  cardiovascular  risk  modeling[32,33].  Such  models
hold  the  potential  for  integration  into  real-time
surveillance  systems,  enabling  timely  and  targeted
public  health  responses  under  high-risk
environmental conditions.

This  study  had  several  limitations.  First,  it
focused  on  short-term  lag  effects  and  did  not
account  for  cumulative  or  chronic  exposure,  which
are  crucial  in  environmental  epidemiology.  Second,
the use of city-level average environmental data may
obscure  intra-urban  variability,  thereby  limiting
spatial  precision.  Third,  while  the  AE+LSTM  model
improved  predictive  accuracy,  interpretability
remains  a  challenge,  and  further  work  could
incorporate  SHAP  (SHapley  Addictive  exPlanations)
or  LIME  (local  interpretable  model-agnostic
explanation) frameworks to enhance transparency.

 CONCLUSION

This study reveals the distinct temporal dynamics
through  which  climate  and  air  pollution  exposure
affect cardiopulmonary hospital admissions in urban
areas.  Air  pollution  exhibited  strong  immediate
effects, whereas the climatic variables demonstrated
more  persistent  effects  over  extended  lag  periods.
The  AE+LSTM  model  consistently  outperformed  the
standard  LSTM  models  across  all  cities,  achieving
relative improvements of 5%–33%, demonstrating its
ability  to  capture  nonlinear  multivariate
dependencies.  These  findings  highlight  the  value  of
integrating  advanced  machine-learning  approaches
with  environmental  surveillance  to  improve
predictive  performance  and  support  timely
evidence-based public health interventions.
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