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Abstract

Objective To assess the short-term lag effects of climate and air pollution on hospital admissions for
cardiovascular and respiratory diseases, and to develop deep learning-based models for daily hospital
admission prediction.

Methods A multi-city study was conducted in Tokyo’s 23 wards, Osaka City, and Nagoya City. Random
forest models were employed to assess the synergistic short-term lag effects (lag0, lag3, and lag7) of
climate and air pollutants on hospitalization for five cardiovascular diseases (CVDs) and two respiratory
diseases (RDs). Furthermore, we developed hybrid deep learning models that integrated an
autoencoder (AE) with a Long Short-Term Memory network (AE+LSTM) to predict daily hospital
admissions.

Results On the day of exposure (lag0), air pollutants, particularly nitrogen oxides (NOx), exhibited the
strongest influence on hospital admissions for CVD and RD, with pronounced effects observed for
hypertension (110-115), ischemic heart disease (120), arterial and capillary diseases (170-179), and lower
respiratory infections (J20-J22 and J40-J47). At longer lags (lag3 and lag7), temperature and
precipitation were more influential predictors. The AE+LSTM model outperformed the standard LSTM,
improving the prediction accuracy by 32.4% for RD in Osaka and 20.94% for CVD in Nagoya.

Conclusion Our findings reveal the dynamic, time-varying health risks associated with environmental
exposure and demonstrate the utility of deep learnings in predicting short-term hospital admissions.
This framework can inform early warning systems, enhance healthcare resource allocation, and support
climate-adaptive public health strategies.

Key words: Air pollution; Climate change; Cardiovascular diseases; Respiratory diseases; Deep learning;
Hospitalization.

Biomed Environ Sci, 2025; 38(11): 1-10 doi: 10.3967/bes2025.000 ISSN: 0895-3988
www.besjournal.com (full text) CN: 11-2816/Q Copyright ©2025 by China CDC
INTRODUCTION epidemiological studies have demonstrated that

risks associated with these diseases are increasingly

ardiovascular and respiratory diseases are influenced by climate factors and air poIIution[H]. In

C the leading causes of morbidity and real-world contexts, individuals are frequently
mortality worldwide. Numerous exposed to multiple environmental stressors such as
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extreme heat and air pollution, which may interact in
nonlinear and multiplicative ways[4]. Although
extensive studies have explored the health impacts
of individual exposure, relatively few have examined
their synergistic effects. Limited evidence from
Canada®, France'®, and Hungarym suggests that
exposure to pollutants and meteorological
conditions can significantly affect hospitalization
risks. However, findings across studies remain
inconsistent, partly due to heterogeneity in exposure
contexts and because conventional statistical models
often struggle to accommodate multicollinearity and
complex interactions.

Traditional models, such as Generalized Additive
Models (GAMs), Generalized Linear Models (GLMs),
and Distributed Lag Nonlinear Models (DLNMs), are
widely used in environmental epidemiology.
However, these models are often constrained by
their inability to process high-dimensional data,
resolve multicollinearity, and capture intricate and
dynamic interactions among  environmental
variables.” Machine learning (ML) offers a promising
alternative. Most ML approaches are capable of
modeling nonlinear associations, handling multilag
structures, and processing large-scale high-
dimensional datasets. By capturing the complex and
dynamic relationships among multiple exposures,
ML-based models enhance the ability to predict
diseases, support early public health interventions,
and improve healthcare resource planning.[gl Among
these, deep learning models, particularly Long Short-
Term Memory (LSTM) networks, are well-suited for
modeling  temporal dynamics[m], effectively
accounting for both lag effects and long-term
dependencies under rapidly changing environmental
conditions™*?.

In Asia, particularly Japan, research on the
synergistic health impacts of climate change and air
pollution remains limited, despite rising
environmental health risks"®. Urban centers such as
Tokyo, Osaka, and Nagoya are characterized by high
population densities, rapid aging, frequent extreme
weather events driven by the Siberian High and
Pacific currents'”, and persistent air pollution. These
overlapping vulnerabilities make Japan a critical
setting for investigating the combined impact of
environmental exposure. However, most studies
have focused on either temperatureus] or air
poIIutants“G’m in isolation. Furthermore, most prior
research has emphasized mortality as an outcome,
whereas hospital admission, an earlier and more
actionable  health outcome, has received
comparatively less attention.

This study investigated the cumulative synergistic
effects of climatic conditions and air pollution on
hospital admissions for cardiovascular and
respiratory diseases across Tokyo’s 23 wards, Osaka
City, and Nagoya City. Specifically, we (1) applied
machine learning models to quantify the synergistic
exposure effects of climate and air pollution, as well
as their relative contributions across multiple short-
term lag periods (lag0, lag3, and lag7); and (2) used
these insights to inform the selection of key input
and lag structures for hybrid deep learning models,
with the goal of improving the accuracy of daily
hospital admission prediction. By advancing both
exposure assessment and predictive modeling, this
study provides a more comprehensive
understanding of environmental health risks in Japan
and contributes to the development of proactive
public health strategies to compound
climate—pollution stressors.

MATERIALS AND METHODS

Study Site

This study focused on three major metropolitan
areas in Japan: Tokyo’s 23 wards, Osaka City, and
Nagoya City, located along the Pacific coast of
Honshu Island (34°-36°N), within the humid
subtropical climate zone (Képpen Cfa), which is
characterized by hot, humid summers and mild,
relatively dry winters. These cities aret Japan’s most
densely populated and industrially active regions
with high pollution levels and pronounced climate
variability. Their well-established environmental
monitoring infrastructure provides detailed data on
air quality, meteorological conditions, and health
outcomes, making them ideal sites for examining the
health impacts of climate change and air pollution.

Hospital Admission Data

Hospital admission data for the period from
January 1, 2017, to December 31, 2019, were
obtained from the JMDC Claims Database As the
largest civilian epidemiological dataset in Japan,
which  compiled anonymized inpatient and
outpatient medical claim data from participating
health insurance associations, covering
approximately 17 million individuals. The dataset
included standardized information on inpatients,
outpatients, pharmacies, and health checkup
records. The variables extracted included the date of
visit, location, sex, age, number of first visits,
hospital admissions, and follow-ups. Diagnoses were
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made using the International Classification of
Diseases, 10th Revision (ICD-10). For this study, daily
counts of first visits and admissions were
aggregated, and disease codes corresponding to
cardiovascular diseases (CVvD: 110-115
[hypertension], 120 [ischemic heart disease], 121-122
[acute myocardial infarction], 125 [chronic ischemic
heart disease], and 170-179 [arterial and capillary
diseases]) and respiratory diseases (RD: 126-128
[pulmonary heart disease], and J20-J22; J40-J47
[lower respiratory infections]) were extracted for
analysis.

Meteorological and Air Pollution Data

The meteorological variables included daily mean
temperature, wind speed, solar insolation,
atmospheric  pressure, relative humidity, and
precipitation, all of which were obtained from the
Japan Meteorological Agency (JMA). The JMA
measures meteorological conditions using its
automatic weather observation system (AMeDAS),
with observation stations are located approximately
every 21 km throughout the country. For each city,
daily averages were calculated across all available
observation stations to represent city-level
exposure. Air pollution data included daily mean
concentrations of nitrogen oxides (NO,), carbon
monoxide (CO), photochemical oxidants (O,),
suspended particulate matter (SPM), particulate
matter <2.5 um (PM,;), and sulfur dioxide (SO,).
These data were sourced from the representative
environmental agencies of Tokyo’s 23 wards in
Osaka City and Nagoya City. For each pollutant, the
daily mean concentrations were computed by

Latent space
(Representation)

Encoder

:

Input data

Encoded data

averaging the values from all observation stations:
28 stations in Tokyo, 26 in Osaka, and 18 in Nagoya.

Random Forest Model

To quantify the short-term cumulative effects of
environmental exposure on hospital admission,
Random Forest regression models
(RandomForestRegressor) were applied for the lag0,
lag3, and lag7 period. Each model incorporated all
environmental variables for the current day,
previous 3 days, and the previous 7 days. Feature
importance was extracted to evaluate the relative
contribution of each variable. To optimize model
performance, hyperparameters, including the
number of trees (150, 200, and 300), maximum
features per split (3 and 4), and minimum samples
per split, were tuned using a grid search to improve
model accuracy and reduce overfitting. All the
analyses were conducted using Python 3.12.7
(Python Software Foundation, Wilmington,
Delaware, USA).

Autoencoder and Long Short-Term Memory
(AE+LSTM) Hybrid Prediction Model

To improve the prediction of daily disease-
related hospital admissions, a hybrid deep learning
model combining an autoencoder (AE) and LSTM
network was developed. The encoder component of
the AE compresses the raw input data into latent
space Z (Figure 1), which is then reconstructed by
the decoder. Through unsupervised learning, the AE
autonomously extract key features relevant to
hospital admission prediction. This architecture
enables dimensionality reduction and denoising,

Decoder

Reconstructed Input data

Figure 1. Structure of an Autoencoder.
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allowing the model to focus on the salient patterns
in the data. The encoded features were then input
into the LSTM, which captured the long-term
dependencies for time-series prediction.

Hyperparameter tuning was performed for both
the model components. For the AE, the encoding
dimensions (2-8), batch size (32 and 64), epochs
(200-400), and dropout rate (0.1-0.5) were
optimized. For LSTM, the number of hidden layers (2
and 3), time steps (3, 7, and 14), learning rates
(0.001-0.01), and training epochs (200—1000) were
used to improve the prediction performance.

To ensure an adequate sample size, disease-
related hospital admissions were grouped into
two categories based on ICD-10 codes: total
respiratory and total cardiovascular diseases. This
aggregation was necessary because of the low case
counts for certain diseases (e.g., 121, 122, and
126-128) and minimal differences in feature
contributions  across  subgroups. All  model
developments and evaluations were performed
using Python version 3.12.7. (Python Software
Foundation, Wilmington, DE, USA).

Model Evaluation

Given the time-series nature of the dataset, a 10-
fold cross-validation was employed to tune the
model hyperparameters. The model performance
was evaluated using the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) as the primary
metrics using the following formula:

where i is the ith day, y, represents the actual
hospitalization for each disease, and y; represents

RESULTS

Data Characteristics

Table 1 summarizes the disease-specific hospital
admissions in the three study cities from 2017 to
2019. Lower respiratory infections (J20-122; 140-J47)
accounted for the highest number of admissions,
exceeding 600,000, followed by hypertension
(110-115). Among the three cities, Tokyo’s 23 wards
recorded the highest number of admissions, with
more than 37,000 for cardiovascular diseases (CVD)
and 38,000 for respiratory diseases (RD). Nagoya City
ranked second, with more than 16,000 CVD
admissions and 220,000 RD admissions. Osaka City
reported the lowest figures with over 9,000 CVD and
67,000 RD cases.

According to Supplementary Table S1, Nagoya
experienced the  highest daily maximum
temperature (33.31 °C), solar insolation (31.17
MJ/mZ), and wind speed (8.71 m/s), but also recored
the lowest minimum temperature (-1.10 °C).
Osaka reported the highest average temperature
(17.33 °C), slightly above Tokyo (16.40 °C) and
Nagoya (16.66 °C). Tokyo exhibited the highest
average atmospheric pressure (1010.90 hPa) and
relative humidity (69.49%).

For air pollutants, Osaka had the highest average
concentration of NO, (0.029 ppm) and SO, (0.004
ppm). Tokyo reported the highest CO concentration
(0.43 ppm), followed by Nagoya (0.34 ppm) and
Osaka (0.33 ppm). O, levels were similar across all
three cities (0.024-0.030 ppm). PM,.; and SPM
showed minimal variation, ranging from 11.64 to
14.47 pug/m’ and 16.40 to 19.43 ug/m’, respectively.

Interaction Between Climate and Air Pollution

Spearman’s correlation analysis was conducted
to examine the relationships between climate and
air pollution variables across the three cities
(Figure 2). Among the climatic variables, humidity
and precipitation were positively correlated,
whereas temperature and atmospheric pressure

the predicted hospitalization for each disease. showed a consistent inverse relationship. For
pollutants, NO, CO, and SO, were strongly
Table 1. Hospitalization of each disease in Tokyo, Osaka, and Nagoya
Disease J20-)22; Total Total
code 110-115 120 121-122 125 170-179 126-128 140147 CVDs RDs
Tokyo 23,532 4,774 497 1,191 7,645 404 381,029 37,639 381,433
Osaka 6,126 1,312 112 343 1,825 61 67,666 9,718 67,727
Nagoya 10,666 2,570 208 330 2,512 365 224,207 16,286 224,572
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correlated with PM,s concentrations, with the
highest correlation observed between CO and PM, 5
in Tokyo (r = 0.64). Temperature consistently
showed negative correlations with SO, and NO,,
particularly in Osaka (r = —0.71 for SO,). Wind speed
was positively associated with Ox and negatively
with NO, (r =-0.62 in Osaka).

Despite these general patterns, regional
differences were evident. For instance, humidity
correlated negatively with NO, in Tokyo but
positively in  Nagoya and Osaka. Similarly,
temperature showed a moderate positive
correlation with NO, in Tokyo, in contrast to the
negative associations observed in other cities. These
findings highlight the spatial heterogeneity in
climate—pollution interactions, which are likely
influenced by local climatic, topographic, and
anthropogenic factors.

Assessment of Short-term Cumulative Lag Effect

As shown in Figure 3 and Supplementary Table
S2, on the day of exposure (lag0), air pollution
exhibited a substantially greater total feature
contribution to disease-related hospital admissions
than climate variables in all three cities. Among the
predictors, NO, was the most influential with a
feature contribution of 0.24 in Osaka, 0.22 in Tokyo,
and 0.21 in Nagoya. Its effect was particularly strong
on hypertension (110-115), arterial capillary diseases
(170-179), and lower respiratory infections (J20-J22,
J40-J47). PM,s and SPM also showed notable
contributions to cardiovascular-related admissions,
especially for acute myocardial infarction (121-122),
chronic ischemic heart disease (125), and pulmonary
heart disease (126-128). Regional variation was
evident; CO contributed more in Osaka (0.16) and
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Nagoya (0.15) than in Tokyo (0.11). Similarly, SO,
had a greater influence on most diseases in Osaka
and Nagoya, except for lower respiratory infections
(J20-J22 and J40-J47), in which its effect remained
consistently low.

At a 3-day lag (lag3), the contribution of most air
pollutions declined, whereas the importance of
climate variables increased. Temperature became a
more significant predictor of lower respiratory tract
infections (J20-J22 and J40-J47), with contributions
reaching 0.09-0.11 across cities. In contrast, the
contribution of NO, declined by more than 40%
across all diseases, particularly hypertension
(120-115) and respiratory diseases. CO and SO, also
exhibited modest decreases in their contributions.

At 7-day (lag7), the combined contribution of the
climate variables approached that of the air
pollutants. Precipitation became more influential,
especially in admissions for acute myocardial
infarction (121-122) and chronic ischemic heart
disease (125), with contributions reaching 0.06-0.08
in Osaka and Nagoya. Temperature was strongly
associated with respiratory admissions in both cities,
whereas the overall contribution of air pollution
diminished.

Comparing the feature contributions across lag
days, NO, showed the steepest decline, being
dominant at lag0 but substantially reduced by lag3
and lag7. Conversely, temperature, solar insolation,
humidity, and atmospheric pressure increased
steadily over time, with their combined
contributions increasing by 20%—-30% from lag0 to
lag7. PM,s and SPM remained relatively stable
across lag periods but contributed slightly more to
the acute disease categories. Notably, on the day of
exposure, climatic variables contributed more to
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Figure 2. Heat map of the interaction between climate and air pollution factors. Red indicates a negative
correlation, blue indicates a positive correlation, and the size of the dot represents the strength of the
correlation, with larger dots indicating stronger correlations.
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Figure 3. Feature contribution of climate and air pollution factors to disease-related hospitalizations
across different cumulative lag days in Tokyo’s 23 wards, Osaka, and Nagoya. Climate variables include
temperature, wind speed, solar insolation, humidity, atmospheric pressure, and precipitation, while air
pollutants comprise NO,, SO,, CO, O,, PM, s, and SPM. Lag0, lag3, and lag7, respectively, measure the
immediate, 3-day delayed, and 7-day delayed impacts of these meteorological factors on disease-related
hospitalization.
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hospital admissions for acute myocardial infarction
(121-122) than for other diseases, a pattern that was
reversed at lag3 when air pollution became the
dominant contributor. Across all lags, SPM and PM, 5
consistently contributed more to acute than chronic
disease admissions.

Prediction Results and Model Comparison

The AE+LSTM model consistently outperformed
the standard LSTM model in predicting daily hospital
admissions in all three cities. As shown in Table 2, in
Nagoya, AE+LSTM achieved the largest gains for
cardiovascular admissions (CVD), reducing the RMSE
and MAE by 1.56 and 1.59, corresponding to

improvements of 20.94% and 25.90%, respectively.
The model also performed well for respiratory
diseases (RD), with RMSE and MAE reductions of
25.02% and 22.61%, respectively. In Osaka, the
greatest improvements were observed for
respiratory diseases, where the RMSE decreased
from 35.86 to 24.24 and the MAE from 26.92 to
18.33, representing improvements of 32.40% and
31.91%, respectively. Tokyo, although the
performance gains were smaller, AE+LSTM still
showed consistent improvements: for cardiovascular
admissions, RMSE and MAE decreased by 10.45%
and 9.77%, respectively, while for respiratory
diseases, the reductions were 6.73% and 7.10%,

Table 2. Comparison of RMSE and MAE and relative improvement (%) of prediction performance of
LSTM and AE+LSTM

LSTM AE+LSTM Relative improvement
Tokyo Osaka Nagoya Tokyo Osaka Nagoya Tokyo Osaka Nagoya
Total CVDs 13.78 4.68 7.45 12.34 4.47 5.89 10.45% 4.49% 20.94%
RMISE Total RDs 171.72 35.86 116.43 160.17 24.24 87.32 6.73% 32.40% 25.00%
Total CVDs 10.75 3.82 6.14 9.7 3.63 4.55 9.77% 4.97% 25.90%
MAE Total RDs 129.60 26.92 85.33 120.40 18.33 66.01 7.10% 31.91% 22.64%

Disease: total hospitalization of CVDs
Number of patients: 16,286

Region: Nagoya

Disease: total hospitalization of RDs
Number of patients: 67,727
Region: Osaka

Figure 4. Visualization of prediction results with the best model performance in testing datasets. The
vertical axis represents the number of daily hospitalizations. The left figure represents the prediction
results of CVD-related hospitalization in Nagoya city, and the right figure illustrates the prediction results
of RD-related hospitalization in Osaka city. The red line represnts actual hospitalization, the blue line
represents the prediction value of the LSTM model, and the green line represents the prediction value of
the AE+LSTM. CVDs, cardiovascular diseases; RDs, two respiratorydiseases; RMSE, Root Mean Square
Error; MAE, Mean Absolute Error; LSTM, Long Short Term Memory; AE, autoencoder.
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respectively. Figure 4 shows the prediction results of
the models.

DISCUSSION

This study provides evidence of the differential
temporal effects of climate and air pollution
exposure on hospital admissions for cardiovascular
and respiratory diseases across three major cities.
We identified distinct lag structures for the climate
and pollution variables, suggesting divergent
biological mechanisms and risk dynamics.

The observed lag effects of climatic variables,
particularly temperature and precipitation, were
consistent with the findings of prior large-scale
epidemiological studies. For instance, multi-country
studies have shown that the risk of cardiovascular
and respiratory admissions associated with ambient
temperature often peaks at lag days 5 to 10,
especially under extreme heat or cold events."*?"
Similarly, extreme precipitation has been associated
with an increased risk of myocardial infarction and
infectious respiratory diseases, with both single-day
and cumulative lag effects extending up to two
weeks.”" These effects likely reflect the complex
physiological pathways through which the climate
influences disease onset and progression[zz],
including changes in blood pressure, blood viscosity,
and inflammatory responsesm]. Therefore, seasonal
changes, temperature fluctuations, and extreme
weather events are widely recognized as triggers of
delayed health effects®”.

In contrast, the effects of air pollution were most
pronounced on the day of exposure and declined
rapidly thereafter, consistent with findings from
time-series and controlled exposure studies™. NO,
has emerged as a dominant short-term contributor
to both cardiovascular and respiratory admissions,
likely due to its role in inducing oxidative stress and
endothelial dysfunction[26], particularly in traffic-
dense urban environments. In addition, the (PM,.g
and SPM) demonstrated more sustained effects
across lag periods. This supports existing evidence
that fine and suspended particulates can penetrate
deep into the lungs and enter the circulatory system,
leading to systemic inflammation and coagulation

disturbances that persist beyond initial
exposu rel? 2,
The AE+LSTM hybrid model consistently

outperformed the conventional LSTM model in
predicting admissions across all the cities. Its
superior performance may be attributed to the
ability of the autoencoder to extract latent features

and reduce the input dimensionality, thereby
enhancing temporal pattern recognitionm]. This
finding aligns with prior studies that incorporated
autoencoder modules into predictive architectures
for cardiovascular risk modeling[az’m. Such models
hold the potential for integration into real-time
surveillance systems, enabling timely and targeted
public health responses under  high-risk
environmental conditions.

This study had several limitations. First, it
focused on short-term lag effects and did not
account for cumulative or chronic exposure, which
are crucial in environmental epidemiology. Second,
the use of city-level average environmental data may
obscure intra-urban variability, thereby limiting
spatial precision. Third, while the AE+LSTM model
improved predictive accuracy, interpretability
remains a challenge, and further work could
incorporate SHAP (SHapley Addictive exPlanations)
or LIME (local interpretable model-agnostic
explanation) frameworks to enhance transparency.

CONCLUSION

This study reveals the distinct temporal dynamics
through which climate and air pollution exposure
affect cardiopulmonary hospital admissions in urban
areas. Air pollution exhibited strong immediate
effects, whereas the climatic variables demonstrated
more persistent effects over extended lag periods.
The AE+LSTM model consistently outperformed the
standard LSTM models across all cities, achieving
relative improvements of 5%—33%, demonstrating its
ability to  capture nonlinear  multivariate
dependencies. These findings highlight the value of
integrating advanced machine-learning approaches
with environmental surveillance to improve
predictive performance and support timely
evidence-based public health interventions.
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