Volume 16 Issue 1
Mar.  2003
Turn off MathJax
Article Contents

JUN-FU ZHOU, YE-HUA ZHOU, Liang Zhang, Huai-Hong Chen, DONG CAI. 3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage[J]. Biomedical and Environmental Sciences, 2003, 16(1): 53-61.
Citation: JUN-FU ZHOU, YE-HUA ZHOU, Liang Zhang, Huai-Hong Chen, DONG CAI. 3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage[J]. Biomedical and Environmental Sciences, 2003, 16(1): 53-61.

3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage

  • Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage and liperoxidative damage to MDMA abusers. Methods 120 MDMA abusers (MA) and 120 healthy volunteers (HV) were enrolled in an independent sample control design, in which the levels of lipoperoxide (LPO) in plasma and erythrocytes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric methods. Results Compared with the average values of biochemical parameters in the HV group, those of LPO in plasma and erythrocytes in the MA group were significantly increased (P<0.0001), while those of SOD, CAT, GPX and AChE in erythrocytes in the MA group were significantly decreased (P<0.0001). The Pearson product-moment correlation analysis between the values of AChE and biochemical parameters in 120 MDMA abusers showed that significant linear negative correlation was present between the activity of AChE and the levels of LPO in plasma and erythrocytes (P<0.0005-0.0001), while significant linear positive correlation was observed between the activity of AchE and the activities of SOD, CAT and GPX (P<0.0001). The reliability analysis for the above biochemical parameters reflecting oxidative and lipoperoxidative damages in MDMA abusers suggested that the reliability coefficient (alpha) was 0.8124, and that the standardized item alpha was 0.9453. Conclusion The findings in the present study suggest that MDMA abuse can induce another neurotoxicity that significantly inhibits acetylcholinesterase activity and aggravates a series of free radical chain reactions and oxidative stress in the bodies of MDMA abusers, thereby resulting in severe neural, oxidative and lipoperoxidative damages in MDMA abusers.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1124) PDF downloads(20) Cited by()

Proportional views
Related

3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage

Abstract: Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage and liperoxidative damage to MDMA abusers. Methods 120 MDMA abusers (MA) and 120 healthy volunteers (HV) were enrolled in an independent sample control design, in which the levels of lipoperoxide (LPO) in plasma and erythrocytes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric methods. Results Compared with the average values of biochemical parameters in the HV group, those of LPO in plasma and erythrocytes in the MA group were significantly increased (P<0.0001), while those of SOD, CAT, GPX and AChE in erythrocytes in the MA group were significantly decreased (P<0.0001). The Pearson product-moment correlation analysis between the values of AChE and biochemical parameters in 120 MDMA abusers showed that significant linear negative correlation was present between the activity of AChE and the levels of LPO in plasma and erythrocytes (P<0.0005-0.0001), while significant linear positive correlation was observed between the activity of AchE and the activities of SOD, CAT and GPX (P<0.0001). The reliability analysis for the above biochemical parameters reflecting oxidative and lipoperoxidative damages in MDMA abusers suggested that the reliability coefficient (alpha) was 0.8124, and that the standardized item alpha was 0.9453. Conclusion The findings in the present study suggest that MDMA abuse can induce another neurotoxicity that significantly inhibits acetylcholinesterase activity and aggravates a series of free radical chain reactions and oxidative stress in the bodies of MDMA abusers, thereby resulting in severe neural, oxidative and lipoperoxidative damages in MDMA abusers.

JUN-FU ZHOU, YE-HUA ZHOU, Liang Zhang, Huai-Hong Chen, DONG CAI. 3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage[J]. Biomedical and Environmental Sciences, 2003, 16(1): 53-61.
Citation: JUN-FU ZHOU, YE-HUA ZHOU, Liang Zhang, Huai-Hong Chen, DONG CAI. 3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage[J]. Biomedical and Environmental Sciences, 2003, 16(1): 53-61.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return