[1]
|
Zhao L, Peng RY, Wang SM, et al. Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci, 2012; 25, 182-8. https://www.researchgate.net/publication/257295558_Relationship_between_Cognition_Function_and_Hippocampus_Structure_after_Long-term_Microwave_Exposure |
[2]
|
Ye J, Yao K, Zeng Q, et al. Changes in gap junctional intercellular communication in rabbits lens epithelial cells induced by low power density microwave radiation. Chin Med J, 2002; 115, 1873-6. https://www.researchgate.net/publication/8053020_Changes_in_gap_junctional_intercellular_communication_in_rabits_lens_epithelial_cells_induced_by_low_power_density_microwave_radiation |
[3]
|
Muller J, Hadeler KP, Muller V, et al. Influence of low power cm-/mm-microwaves on cardiovascular function. Int J Environ Health Res, 2004; 14, 331-41. doi: 10.1080/09603120400004006 |
[4]
|
Kim YA, Fomenko BS, Agafonova TA, et al. Effects of microwave radiation (340 and 900 MHz) on different structural levels of erythrocyte membranes. Bioelectromagnetics, 1985; 6, 305-12. doi: 10.1002/(ISSN)1521-186X |
[5]
|
Zhao L, Yang YF, Gao YB, et al. Upregulation of HIF-1alpha via activation of ERK and PI3K pathway mediated protective response to microwave-induced mitochondrial injury in neuron-like cells. Mol Neurobiol, 2014; 50, 1024-34. doi: 10.1007/s12035-014-8667-z |
[6]
|
Zhao L, Sun C, Xiong L, et al. MicroRNAs: Novel Mechanism Involved in the Pathogenesis of Microwave Exposure on Rats' Hippocampus. J Mol Neurosci: MN, 2014; 53, 222-30. doi: 10.1007/s12031-014-0289-4 |
[7]
|
Zhang X, Gao Y, Dong J, et al. The compound Chinese medicine "Kang Fu Ling" protects against high power microwave-induced myocardial injury. PloS One, 2014; 9, e101532. doi: 10.1371/journal.pone.0101532 |
[8]
|
Liu YQ, Gao YB, Dong J, et al. Pathological changes in the sinoatrial node tissues of rats caused by pulsed microwave exposure. Biomed Environ Sci, 2015; 28, 72-5. https://www.researchgate.net/publication/270655734_Pathological_Changes_in_the_Sinoatrial_Node_Tissues_of_Rats_Caused_by_Pulsed_Microwave_Exposure |
[9]
|
Xiong L, Sun CF, Zhang J, et al. Microwave exposure impairs synaptic plasticity in the rat hippocampus and PC12 cells through over-activation of the NMDA receptor signaling pathway. Biomed Environ Sci, 2015; 28, 13-24. http://www.cnki.com.cn/Article/CJFDTotal-SWYX201501002.htm |
[10]
|
Wang LF, Li X, Gao YB, et al. Activation of VEGF/Flk-1-ERK Pathway Induced Blood-Brain Barrier Injury After Microwave Exposure. Mol Neurobiol, 2014. https://www.researchgate.net/publication/265418740_Activation_of_VEGFFlk-1-ERK_Pathway_Induced_Blood-Brain_Barrier_Injury_After_Microwave_Exposure |
[11]
|
Zuo H, Lin T, Wang D, et al. RKIP Regulates Neural Cell Apoptosis Induced by Exposure to Microwave Radiation Partly Through the MEK/ERK/CREB Pathway. Mol Neurobiol, 2014. https://www.researchgate.net/publication/264632036_RKIP_Regulates_Neural_Cell_Apoptosis_Induced_by_Exposure_to_Microwave_Radiation_Partly_Through_the_MEKERKCREB_Pathway |
[12]
|
Khomenko AG, Sigaev AT, Chukanov VI, et al. Effects of millimetric electromagnetic waves on regional blood flow and effectiveness of multimodal therapy of patients with pulmonary tuberculosis. Vestn Ross Akad Med Nauk, 1995; 42-4. https://www.ncbi.nlm.nih.gov/pubmed/7670342 |
[13]
|
Rojavin MA, Ziskin MC. Electromagnetic millimeter waves increase the duration of anaesthesia caused by ketamine and chloral hydrate in mice. Int J Radiat Biol, 1997; 72, 475-80. doi: 10.1080/095530097143248 |
[14]
|
Zaporozhan VN, Khait OV, Bespoyasnaya VV. Application of short-wave therapy in complex treatment for endometrial cancer. Eur J Gynaecol Oncol, 1993; 14, 296-301. https://www.ncbi.nlm.nih.gov/pubmed/8344323 |
[15]
|
Sambucci M, Laudisi F, Nasta F, et al. Prenatal exposure to non-ionizing radiation: effects of WiFi signals on pregnancy outcome, peripheral B-cell compartment and antibody production. Radiat Res, 2010; 174, 732-40. doi: 10.1667/RR2255.1 |
[16]
|
Sambucci M, Laudisi F, Nasta F, et al. Early life exposure to 2. 45GHz WiFi-like signals: effects on development and maturation of the immune system. Prog Biophys Mol Biol, 2011; 107, 393-8. doi: 10.1016/j.pbiomolbio.2011.08.012 |
[17]
|
Makar VR, Logani MK, Bhanushali A, et al. Effect of cyclophosphamide and 61. 22 GHz millimeter waves on T-cell, B-cell, and macrophage functions. Bioelectromagnetics, 2006; 27, 458-66. doi: 10.1002/(ISSN)1521-186X |
[18]
|
Adam C, King S, Allgeier T, et al. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood, 2005; 106, 338-44. doi: 10.1182/blood-2004-09-3775 |
[19]
|
Dmoch A, Moszczynski P. Levels of immunoglobulin and subpopulations of T lymphocytes and NK cells in men occupationally exposed to microwave radiation in frequencies of 6-12 GHz. Med Pr, 1998; 49, 45-9. https://www.researchgate.net/publication/13696024_Levels_of_immunoglobulin_and_subpopulations_of_T_lymphocytes_and_NK_cells_in_men_occupationally_exposed_to_microwave_radiation_in_frequencies_of_6-12_GHz |
[20]
|
Takaki R, Hayakawa Y, Nelson A, et al. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol, 2005; 175, 2167-73. doi: 10.4049/jimmunol.175.4.2167 |
[21]
|
Poggi A, Zocchi MR. NK cell autoreactivity and autoimmune diseases. Front Immunol, 2014; 5, 27. https://moh-it.pure.elsevier.com/en/publications/nk-cell-autoreactivity-and-autoimmune-diseases |
[22]
|
Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol, 2014; 92, 230-6. doi: 10.1038/icb.2013.111 |
[23]
|
Wang H, Peng R, Zhou H, et al. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol, 2013; 89, 1100-7. doi: 10.3109/09553002.2013.817701 |
[24]
|
Peinnequin A, Piriou A, Mathieu J, et al. Non-thermal effects of continuous 2. 45 GHz microwaves on Fas-induced apoptosis in human Jurkat T-cell line. Bioelectrochemistry, 2000; 51, 157-61. doi: 10.1016/S0302-4598(00)00064-7 |
[25]
|
Gatta L, Pinto R, Ubaldi V, et al. Effects of in vivo exposure to GSM-modulated 900 MHz radiation on mouse peripheral lymphocytes. Radiation Research, 2003; 160, 600-5. doi: 10.1667/RR3078 |
[26]
|
Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 1999; 285, 727-9. doi: 10.1126/science.285.5428.727 |
[27]
|
Yang HK, Cain CA, Lockwood J, et al. Effects of microwave exposure on the hamster immune system. Ⅰ. Natural killer cell activity. Bioelectromagnetics, 1983; 4, 123-39. doi: 10.1002/(ISSN)1521-186X |
[28]
|
Deschaux P, Douss T, Santini R, et al. Effect of microwave irradiation (2450 MHz) on murine cytotoxic lymphocyte and natural killer (NK) cells. J Microw Power, 1984; 19, 107-10. doi: 10.1080/16070658.1984.11689356 |
[29]
|
Smialowicz RJ, Rogers RR, Garner RJ, et al. Microwaves (2, 450 MHz) suppress murine natural killer cell activity. Bioelectromagnetics, 1983; 4, 371-81. doi: 10.1002/(ISSN)1521-186X |
[30]
|
Chang CJ, Chen YY, Lu CC, et al. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin. Innate immunity, 2014; 20, 301-11. doi: 10.1177/1753425913491789 |
[31]
|
Wu L, Zhang C, Zhang J. HMBOX1 negatively regulates NK cell functions by suppressing the NKG2D/DAP10 signaling pathway. Cell Mol Immunol, 2011; 8, 433-40. doi: 10.1038/cmi.2011.20 |
[32]
|
Bambard ND, Mathew SO, Mathew PA. LLT1-mediated activation of IFN-gamma production in human natural killer cells involves ERK signalling pathway. Scand J Immunol, 2010; 71, 210-9. doi: 10.1111/sji.2010.71.issue-3 |
[33]
|
Chen Y, Wang Y, Zhuang Y, et al. Mifepristone increases the cytotoxicity of uterine natural killer cells by acting as a glucocorticoid antagonist via ERK activation. PloS one, 2012; 7, e36413. doi: 10.1371/journal.pone.0036413 |
[34]
|
Meng M, Li C, Chen D, et al. Novel synthetic immunostimulators with a thiazolidin-4-one ring promote the cytotoxicity of human NK cells via ERK1/2 activation in vitro. Int Immunopharmacol, 2013; 15, 655-60. doi: 10.1016/j.intimp.2013.02.019 |
[35]
|
Yu MA, Liang P, Yu XL, et al. Multiple courses of immunotherapy with different immune cell types for patients with hepatocellular carcinoma after microwave ablation. Exp Ther Med, 2015; 10, 1460-6. doi: 10.3892/etm.2015.2681?text=abstract |
[36]
|
Li L, Wang W, Pan H, et al. Microwave ablation combined with OK-432 induces Th1-type response and specific antitumor immunity in a murine model of breast cancer. J Transl Med, 2017; 15, 23. doi: 10.1186/s12967-017-1124-9 |