[1]
|
Hwang YS, Ko MH, Kim YM, et al. The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy. Sci Rep, 2016; 6, 36704. doi: 10.1038/srep36704 |
[2]
|
Garrido C, Gurbuxani S, Ravagnan L, et al. Heat shock proteins:endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 2001; 286, 433-42. doi: 10.1006/bbrc.2001.5427 |
[3]
|
Gusev NB, Bogatcheva NV, Marston SB. Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry, 2002; 67, 511-9. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=12059769 |
[4]
|
Verschuure P, Croes Y, van den IJssel PR, et al. Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J Mol Cell Cardiol, 2002; 34, 117-28. doi: 10.1006/jmcc.2001.1493 |
[5]
|
Lanneau D, Wettstein G, Bonniaud P, et al. Heat shock proteins:cell protection through protein triage. Scientific World J, 2010; 10, 1543-52. doi: 10.1100/tsw.2010.152 |
[6]
|
Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol, 2012; 44, 1622-31. doi: 10.1016/j.biocel.2012.04.002 |
[7]
|
Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Delivery Rev, 2009; 61, 310-8. doi: 10.1016/j.addr.2009.02.003 |
[8]
|
Luo QB, Song XY, Ji CL, et al. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene, 2014; 546, 200-5. doi: 10.1016/j.gene.2014.06.017 |
[9]
|
Kim KK, Kim R, Kim SH. Crystal structure of a small heat-shock protein. Nature, 1998; 394, 595-9. doi: 10.1038/29106 |
[10]
|
Koteiche HA, Mchaourab HS. (1999) Folding pattern of the alpha-crystallin domain in alphaA-crystallin determined by site-directed spin labeling. J Mol Biol, 1999; 294, 561-77. doi: 10.1006/jmbi.1999.3242 |
[11]
|
Rao PV, Horwitz J, Zigler JS Jr. Alpha-crystallin, a molecular chaperone, forms a stable complex with carbonic anhydrase upon heat denaturation. Biochem Biophys Res Commun, 1993; 190, 786-93. doi: 10.1006/bbrc.1993.1118 |
[12]
|
Ehrnsperger M, Gräber S, Gaestel M, et al. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J, 1997; 16, 221-9. doi: 10.1093/emboj/16.2.221 |
[13]
|
Veinger L, Diamant S, Buchner J, et al. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem, 1998; 273, 11032-7. doi: 10.1074/jbc.273.18.11032 |
[14]
|
Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol, 2000; 122, 189-98. doi: 10.1104/pp.122.1.189 |
[15]
|
Kawazoe Y, Tanabe M, Nakai A. Ubiquitous and cell-specific members of the avian small heat shock protein family. FEBS Lett, 1999; 455, 271-5. doi: 10.1016/S0014-5793(99)00900-X |
[16]
|
Katoh Y, Fujimoto M, Nakamura K, et al. Hsp25, a member of the Hsp30 family, promotes inclusion formation in response to stress. FEBS Lett, 2004; 565, 28-32. doi: 10.1016/j.febslet.2003.12.085 |
[17]
|
Ramdzan YM, Trubetskov MM, Ormsby AR, et al. Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis. Cell Rep, 2017; 19, 919-27. doi: 10.1016/j.celrep.2017.04.029 |
[18]
|
Gabai VL, Mabuchi K, Mosser DD, et al. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol, 2002; 22, 3415-24. doi: 10.1128/MCB.22.10.3415-3424.2002 |
[19]
|
Evans CG, Chang L, Gestwicki JE. Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem, 2010; 53, 4585-602. doi: 10.1021/jm100054f |
[20]
|
Lee GJ, Roseman AM, Saibil HR, et al. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J, 1997; 16, 659-71. doi: 10.1093/emboj/16.3.659 |
[21]
|
Chichester L, Wylie AT, Craft S, et al. Muscle heat shock protein 70 predicts insulin resistance with aging. J Gerontol A-Biol Sci Med Sci, 2015; 70, 155-62. doi: 10.1093/gerona/glu015 |
[22]
|
Tatsuta T, Hosono M, Ogawa Y, et al. Downregulation of Hsp70 inhibits apoptosis induced by sialic acid-binding lectin (leczyme). Oncol Rep, 2014; 31, 13-8. doi: 10.3892/or.2013.2814 |
[23]
|
Inoue H, Uyama T, Suzuki T, et al. Phosphorylated hamartin-Hsp70 complex regulates apoptosis via mitochondrial localization. Biochem Biophys Res Commun, 2010; 391, 1148-53. doi: 10.1016/j.bbrc.2009.12.054 |
[24]
|
Radons J. The human HSP70 family of chaperones:where do we stand? Cell Stress Chaperones, 2016; 21, 379-404. doi: 10.1007/s12192-016-0676-6 |
[25]
|
Frank AK, Pietsch EC, Dumont P, et al. Wild-type and mutantP53 proteins interact with mitochondrial Caspase-3. Cancer Biol Ther, 2011; 11, 740-5. doi: 10.4161/cbt.11.8.14906 |
[26]
|
Shalini S, Dorstyn L, Dawar S, et al. Old, new and emerging functions of caspases. Cell Death Differ, 2015; 22, 526-39. doi: 10.1038/cdd.2014.216 |
[27]
|
Salvesen GS. Caspases:opening the boxes and interpreting the arrows. Cell Death Differ, 2002; 9, 3-5. doi: 10.1038/sj.cdd.4400963 |
[28]
|
Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer:mutations within caspase genes. J Med Genet, 2009; 46, 497-510. doi: 10.1136/jmg.2009.066944 |
[29]
|
Perry DK, Smyth MJ, Stennicke HR, et al. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem, 1997; 272, 18530-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6029ef1f8ab20cc2b6838f9d7c7c4bd3 |
[30]
|
Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999; 6, 99-104. doi: 10.1038/sj.cdd.4400476 |
[31]
|
Katunuma N, Matsui A, Le QT, et al. Novel procaspase-3 activating cascade mediated by lysoapoptases and its biological significances in apoptosis. Adv Enzyme Regul, 2001; 41, 237-50. doi: 10.1016/S0065-2571(00)00018-2 |
[32]
|
Liu W, Yang T, Xu Z, et al. Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radic Res, 2018; 4, 1-19. |
[33]
|
Lavrik IN, Golks A, Krammer PH. Caspases:pharmacological manipulation of cell death. J Clin Invest, 2005; 115, 2665-72. doi: 10.1172/JCI26252 |
[34]
|
Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol, 2013; 5, pii:a008722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9de805a732e84105a023f76d7adc8847 |
[35]
|
Johnston JA, Ward CL, Kopito RR. Aggresomes:A Cellular Response to Misfolded Proteins. J Cell Biol, 1998; 143, 1883-98. doi: 10.1083/jcb.143.7.1883 |
[36]
|
Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol, 2000; 10, 524-30. doi: 10.1016/S0962-8924(00)01852-3 |
[37]
|
García-Mata R, Bebök Z, Sorscher EJ, et al. Characterization and Dynamics of Aggresome Formation by a Cytosolic Gfp-Chimera. J Cell Biol, 1999; 146, 1239-54. doi: 10.1083/jcb.146.6.1239 |
[38]
|
Wigley WC, Fabunmi RP, Lee MG, et al. Dynamic Association of Proteasomal Machinery with the Centrosome. J Cell Biol, 1999; 145, 481-90. doi: 10.1083/jcb.145.3.481 |
[39]
|
Khan S, Khamis I, Heikkila JJ. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells. Comp Biochem Physiol A Mol Integr Physiol, 2015; 189, 130-40. doi: 10.1016/j.cbpa.2015.07.022 |
[40]
|
Murakami H, Pain D, Blobel G. 70-kD heat shock-related protein is one of at least two distinct cytosolic factors stimulating protein import into mitochondria. J Cell Biol, 1988; 107, 2051-7. doi: 10.1083/jcb.107.6.2051 |
[41]
|
Beckmann RP, Mizzen LE, Welch WJ. (1990) Interaction of Hsp 70 with newly synthesized proteins:Implications for protein folding and assembly. Science, 1990; 248, 850-4. doi: 10.1126/science.2188360 |
[42]
|
Shi Y, Thomas JO. The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol, 1992; 12, 2186-92. doi: 10.1128/MCB.12.5.2186 |
[43]
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev, 2011; 91, 1123-59. doi: 10.1152/physrev.00023.2010 |
[44]
|
Wu D, Xu J, Song E, et al. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression. Cell Stress Chaperones, 2015; 20, 687-96. doi: 10.1007/s12192-015-0596-x |
[45]
|
Collier NC, Schlesinger MJ. The dynamic state of heat shock proteins in chicken embryo fibroblasts. J Cell Biol, 1986; 103, 1495-507. doi: 10.1083/jcb.103.4.1495 |
[46]
|
Collier NC, Heuser J, Levy MA, et al. Ultrastructural and biochemical analysis of the stress granule in chicken embryo fibroblasts. J Cell Biol, 1988; 106, 1131-9. doi: 10.1083/jcb.106.4.1131 |
[47]
|
Sonna LA, Fujita J, Gaffin SL, et al. Invited review:Effects of heat and cold stress on mammalian gene expression. J Appl Physiol, 2002; 92, 1725-42. doi: 10.1152/japplphysiol.01143.2001 |
[48]
|
Wang SH, Cheng CY, Tang PC, et al. Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology, 2013; 79, 374-82. doi: 10.1016/j.theriogenology.2012.10.010 |
[49]
|
Wang SH, Cheng CY, Tang PC, et al. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS One, 2015; 10, e0125816. doi: 10.1371/journal.pone.0125816 |
[50]
|
Takahashi T, Kikuchi S, Katada S, et al. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet, 2008; 17, 345-56. doi: 10.1093/hmg/ddm311 |
[51]
|
Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One, 2010; 5, e15245. doi: 10.1371/journal.pone.0015245 |
[52]
|
Nucifora LG, Burke KA, Feng X, et al. Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. J Biol Chem, 2012; 287, 16017-28. doi: 10.1074/jbc.M111.252577 |
[53]
|
Leitman J, Ulrich Hartl F, Lederkremer GZ. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress. Nat Commun, 2013; 4, 2753. doi: 10.1038/ncomms3753 |
[54]
|
Schaffar G, Breuer P, Boteva R, et al. Cellular toxicity of polyglutamine expansion proteins:mechanism of transcription factor deactivation. Mol Cell, 2004; 15, 95-105. doi: 10.1016/j.molcel.2004.06.029 |
[55]
|
Park SH, Kukushin Y, Gupta R, et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell, 2013; 154, 134-45. doi: 10.1016/j.cell.2013.06.003 |
[56]
|
Woerner AC, Frottin F, Hornburg D, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science, 2016; 351, 173-6. doi: 10.1126/science.aad2033 |
[57]
|
Gidalevitz T, Ben-Zvi A, Ho KH, et al. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science, 2006; 311, 1471-4. doi: 10.1126/science.1124514 |
[58]
|
Ehrnsperger M, Lilie H, Gaestel M, et al. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J Biol Chem, 1999; 274, 14867-74. doi: 10.1074/jbc.274.21.14867 |