[1]
|
Taibbi G, Cromwell RL, Kapoor KG, et al. The effect of microgravity on ocular structures and visual function:a review. Surv Ophthalmol, 2013; 58, 155-63. doi: 10.1016/j.survophthal.2012.04.002 |
[2]
|
Alperin N, Bagci AM, Lee SH. Spaceflight-induced changes in white matter hyperintensity burden in astronauts. Neurology, 2017; 89, 2187-91. doi: 10.1212/WNL.0000000000004475 |
[3]
|
Roberts DR, Albrecht MH, Collins HR, et al. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI. N Engl J Med, 2017; 377, 1746-53. doi: 10.1056/NEJMoa1705129 |
[4]
|
Cheron G, Leroy A, De Saedeleer C, et al. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction. Brain Res, 2006; 1121, 104-16. doi: 10.1016/j.brainres.2006.08.098 |
[5]
|
Cheron G, Leroy A, Palmero-Soler E, et al. Gravity influences top-down signals in visual processing. PLoS One, 2014; 9, e82371. doi: 10.1371/journal.pone.0082371 |
[6]
|
Demertzi A, Van Ombergen A, Tomilovskaya E, et al. Cortical reorganization in an astronaut's brain after long-duration spaceflight. Brain Struct Funct, 2016; 221, 2873-6. doi: 10.1007/s00429-015-1054-3 |
[7]
|
Brummer V, Schneider S, Vogt T, et al. Coherence between brain cortical function and neurocognitive performance during changed gravity conditions. J Vis Exp, 2011; 51. http://cn.bing.com/academic/profile?id=a3b2d7d415f291a5cf7ca0f5c5a334e0&encoded=0&v=paper_preview&mkt=zh-cn |
[8]
|
De Saedeleer C, Vidal M, Lipshits M, et al. Weightlessness alters up/down asymmetries in the perception of self-motion. Exp Brain Res, 2013; 226, 95-106. doi: 10.1007/s00221-013-3414-7 |
[9]
|
Marusic U, Meeusen R, Pisot R, et al. The brain in micro-and hypergravity:the effects of changing gravity on the brain electrocortical activity. Eur J Sport Sci, 2014; 14, 813-22. doi: 10.1080/17461391.2014.908959 |
[10]
|
Mulavara AP, Feiveson AH, Fiedler J, et al. Locomotor function after long-duration space flight:effects and motor learning during recovery. Exp Brain Res, 2010; 202, 649-59. doi: 10.1007/s00221-010-2171-0 |
[11]
|
Morey-Holton ER, Globus RK. Hindlimb unloading rodent model:technical aspects. J Appl Physiol (1985), 2002; 92, 1367-77. doi: 10.1152/japplphysiol.00969.2001 |
[12]
|
Li WY, Li XY, Tian YH, et al. Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb-suspended rats by activating sAC/cAMP/PKA/CREB signaling pathway. Bioelectromagnetics, 2018; 39, 569-84. doi: 10.1002/bem.v39.8 |
[13]
|
He JP, Feng X, Wang JF, et al. Icariin prevents bone loss by inhibiting bone resorption and stabilizing bone biological apatite in a hindlimb suspension rodent model. Acta Pharmacol Sin, 2018; 39, 1760-7. doi: 10.1038/s41401-018-0040-8 |
[14]
|
Yang PF, Huang LW, Nie XT, et al. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model. J Musculoskelet Neuronal Interact, 2018; 18, 152-64. http://cn.bing.com/academic/profile?id=54263beb088e047110ffc21f94ddd986&encoded=0&v=paper_preview&mkt=zh-cn |
[15]
|
Marzuca-Nassr GN, Vitzel KF, Murata GM, et al. Experimental Model of HindLimb Suspension-Induced Skeletal Muscle Atrophy in Rodents. Methods Mol Biol, 2019; 1916, 167-76. doi: 10.1007/978-1-4939-8994-2 |
[16]
|
Oliveira JRS, Mohamed JS, Myers MJ, et al. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice. Exp Gerontol, 2019; 115, 19-31. doi: 10.1016/j.exger.2018.11.011 |
[17]
|
Zhang S, Yuan M, Cheng C, et al. Chinese Herbal Medicine Effects on Muscle Atrophy Induced by Simulated Microgravity. Aerosp Med Hum Perform, 2018; 89, 883-8. doi: 10.3357/AMHP.5079.2018 |
[18]
|
Feng L, Liu XM, Cao FR, et al. Anti-stress effects of ginseng total saponins on hindlimb-unloaded rats assessed by a metabolomics study. J Ethnopharmacol, 2016; 188, 39-47. doi: 10.1016/j.jep.2016.04.028 |
[19]
|
Zhang H, Zhao G, Wang D, et al. Effect of electroacupuncture at different acupoints on hormones and neurotransmitters of hypotha-lamic-pituitary-adrenal axis in rats under simulated weightlessness. Chin Acup Moxib, 2015; 35, 1275-9. (In Chinese) http://cn.bing.com/academic/profile?id=5323da50212d048fb1573d9407f0dcbc&encoded=0&v=paper_preview&mkt=zh-cn |
[20]
|
Chowdhury P, Soulsby ME, Jayroe J, et al. Pressure hyperalgesia in hind limb suspended rats. Aviat Space Environ Med, 2011; 82, 988-91. doi: 10.3357/ASEM.3063.2011 |
[21]
|
Chen Y, Xu J, Yang C, et al. Upregulation of miR-223 in the rat liver inhibits proliferation of hepatocytes under simulated microgravity. Exp Mol Med, 2017; 49, e348. doi: 10.1038/emm.2017.80 |
[22]
|
Cavey T, Pierre N, Nay K, et al. Simulated microgravity decreases circulating iron in rats:role of inflammation-induced hepcidin upregulation. Exp Physiol, 2017; 102, 291-8. doi: 10.1113/eph.2017.102.issue-3 |
[23]
|
Song Y, Zhao GZ, Zhao BX, et al. Effect of Electroacupuncture Intervention at Different Time-points on Levels of HSP 70, MDA, SOD and GSH-PX of Liver in Rats with Simulated Weightlessness. Acupuncture Research, 2015; 40, 383-7. (In Chinese) http://d.old.wanfangdata.com.cn/Periodical/zcyj201505008 |
[24]
|
Yoon N, Na K, Kim HS. Simulated weightlessness affects the expression and activity of neuronal nitric oxide synthase in the rat brain. Oncotarget, 2017; 8, 30692-9. http://cn.bing.com/academic/profile?id=94e3ac81e4976f6f5e563c9acc94f193&encoded=0&v=paper_preview&mkt=zh-cn |
[25]
|
Iqbal J, Li W, Hasan M, et al. Distortion of homeostatic signaling proteins by simulated microgravity in rat hypothalamus:A(16) O/(18) O-labeled comparative integrated proteomic approach. Proteomics, 2014; 14, 262-73. doi: 10.1002/pmic.201300337 |
[26]
|
Iqbal J, Li W, Hasan M, et al. Differential expression of specific cellular defense proteins in rat hypothalamus under simulated microgravity induced conditions:comparative proteomics. Proteomics, 2014; 14, 1424-33. doi: 10.1002/pmic.v14.11 |
[27]
|
Krasnov IB, Krasnikov GV, Chel'naia NA. Effect of intermittent hypergravity on cerebellum Purkinje's cells in suspended rats. Aviakosm Ekolog Med, 2009; 43, 39-43. http://cn.bing.com/academic/profile?id=ed53baaf28fb2f3f026ff7b1871bd271&encoded=0&v=paper_preview&mkt=zh-cn |
[28]
|
Wang Y, Iqbal J, Liu Y, et al. Effects of simulated microgravity on the expression of presynaptic proteins distorting the GABA/glutamate equilibrium——A proteomics approach. Proteomics, 2015; 15, 3883-91. doi: 10.1002/pmic.201500302 |
[29]
|
Xue JH, Chen LH, Zhao HZ, et al. Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated microgravity rat. PLoS One, 2011; 6, e19775. doi: 10.1371/journal.pone.0019775 |
[30]
|
Zhang R, Ran HH, Ma J, et al. NAD(P)H oxidase inhibiting with apocynin improved vascular reactivity in tail-suspended hindlimb unweighting rat. J Physiol Biochem, 2012; 68, 99-105. doi: 10.1007/s13105-011-0123-1 |
[31]
|
Nelson ES, Mulugeta L, Feola A, et al. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes. J Appl Physiol (1985), 2017; 123, 352-63. doi: 10.1152/japplphysiol.00102.2017 |
[32]
|
Yi B, Matzel S, Feuerecker M, et al. The impact of chronic stress burden of 520-d isolation and confinement on the physiological response to subsequent acute stress challenge. Behav Brain Res, 2015; 281, 111-5. doi: 10.1016/j.bbr.2014.12.011 |
[33]
|
Strewe C, Feuerecker M, Nichiporuk I, et al. Effects of parabolic flight and spaceflight on the endocannabinoid system in humans. Rev Neurosci, 2012; 23, 673-80. http://cn.bing.com/academic/profile?id=4df9941db2a5a86a212fce54ec24cc75&encoded=0&v=paper_preview&mkt=zh-cn |
[34]
|
Lathers CM, Diamandis PH, Riddle JM, et al. Acute and intermediate cardiovascular responses to zero gravity and to fractional gravity levels induced by head-down or head-up tilt. J Clin Pharmacol, 1990; 30, 494-523. doi: 10.1002/jcph.1990.30.issue-6 |
[35]
|
Rai B, Kaur J. Salivary stress markers and psychological stress in simulated microgravity:21 days in 6 degrees head-down tilt. J Oral Sci, 2011; 53, 103-7. doi: 10.2334/josnusd.53.103 |
[36]
|
Symons TB, Sheffield-Moore M, Chinkes DL, et al. Artificial gravity maintains skeletal muscle protein synthesis during 21 days of simulated microgravity. J Appl Physiol, 2009; 107, 34-8. doi: 10.1152/japplphysiol.91137.2008 |
[37]
|
Sun LW, Blottner D, Luan HQ, et al. Bone and muscle structure and quality preserved by active versus passive muscle exercise on a new stepper device in 21 days tail-suspended rats. J Musculoskelet Neuronal Interact, 2013; 13, 166-77. http://cn.bing.com/academic/profile?id=4e83c0f12f958cc4dc1c810f1172b272&encoded=0&v=paper_preview&mkt=zh-cn |
[38]
|
Bi L, Li YX, He M, et al. Ultrastructural changes in cerebral cortex and cerebellar cortex of rats under simulated weightlessness. Space Med Med Eng (Beijing), 2004; 17, 180-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=htyxyyxgc200403006 |
[39]
|
Huang EJ, Reichardt LF. Neurotrophins:roles in neuronal development and function. Annu Rev Neurosci, 2001; 24, 677-736. doi: 10.1146/annurev.neuro.24.1.677 |
[40]
|
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci, 2015; 11, 1164-78. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025654733/ |
[41]
|
Chang J, Yao X, Zou H, et al. BDNF/PI3K/Akt and Nogo-A/RhoA/ROCK signaling pathways contribute to neurorestorative effect of Houshiheisan against cerebral ischemia injury in rats. J Ethnopharmacol, 2016; 194, 1032-42. doi: 10.1016/j.jep.2016.11.005 |
[42]
|
Wu X, Li D, Liu J, et al. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight. Front Pharmacol, 2017; 8, 315. doi: 10.3389/fphar.2017.00315 |
[43]
|
Xiang S, Zhou Y, Fu J, et al. rTMS pre-treatment effectively protects against cognitive and synaptic plasticity impairments induced by simulated microgravity in mice. Behav Brain Res, 2018. http://cn.bing.com/academic/profile?id=2202801da767f403ce7ce88a21732c2e&encoded=0&v=paper_preview&mkt=zh-cn |
[44]
|
Naumenko VS, Kulikov AV, Kondaurova EM, et al. Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions. Neuroscience, 2015; 284, 730-6. doi: 10.1016/j.neuroscience.2014.10.045 |
[45]
|
Santucci D, Kawano F, Ohira T, et al. Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days. PLoS One, 2012; 7, e40112. doi: 10.1371/journal.pone.0040112 |
[46]
|
Rolls ET. Memory systems in the brain. Annu Rev Psychol, 2000; 51, 599-630. doi: 10.1146/annurev.psych.51.1.599 |
[47]
|
Plakke B, Romanski LM. Neural circuits in auditory and audiovisual memory. Brain Res, 2016; 1640, 278-88. doi: 10.1016/j.brainres.2015.11.042 |
[48]
|
Weinberger NM. New perspectives on the auditory cortex:learning and memory. Handb Clin Neurol, 2015; 129, 117-47. doi: 10.1016/B978-0-444-62630-1.00007-X |
[49]
|
Zimmermann JF, Moscovitch M, Alain C. Attending to auditory memory. Brain Res, 2016; 1640, 208-21. doi: 10.1016/j.brainres.2015.11.032 |
[50]
|
Acuna C, Pardo-Vazquez JL, Leboran V. Decision-making, behavioral supervision and learning:an executive role for the ventral premotor cortex? Neurotox Res, 2010; 18, 416-27. doi: 10.1007/s12640-010-9194-y |
[51]
|
Brown MW, Warburton EC, Aggleton JP. Recognition memory:material, processes, and substrates. Hippocampus, 2010; 20, 1228-44. doi: 10.1002/hipo.v20:11 |
[52]
|
Grabherr L, Mast FW. Effects of microgravity on cognition:The case of mental imagery. J Vestib Res, 2010; 20, 53-60. https://www.ncbi.nlm.nih.gov/pubmed/20555167 |
[53]
|
Eddy DR, Schiflett SG, Schlegel RE, et al. Cognitive performance aboard the life and microgravity spacelab. Acta Astronaut, 1998; 43, 193-210. doi: 10.1016/S0094-5765(98)00154-4 |
[54]
|
Koppelmans V, Erdeniz B, De Dios YE, et al. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance:extent, longevity, and neural bases. BMC Neurol, 2013; 13, 205. doi: 10.1186/1471-2377-13-205 |
[55]
|
Persson T, Popescu BO, Cedazo-Minguez A. Oxidative stress in Alzheimer's disease:why did antioxidant therapy fail? Oxid Med Cell Longev, 2014; 2014, 427318. http://cn.bing.com/academic/profile?id=90b2fefd2bb9be29919c1bb76accc2f6&encoded=0&v=paper_preview&mkt=zh-cn |
[56]
|
Gutteridge JM. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact, 1994; 91, 133-40. doi: 10.1016/0009-2797(94)90033-7 |
[57]
|
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress:A review. Eur J Med Chem, 2015; 97, 55-74. doi: 10.1016/j.ejmech.2015.04.040 |
[58]
|
Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med, 2011; 51, 1302-19. doi: 10.1016/j.freeradbiomed.2011.06.027 |
[59]
|
Sakr HF, Abbas AM, El Samanoudy AZ. Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats. J Physiol Pharmacol, 2015; 66, 191-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5c340db986ee706f10bb6bc4b4f5a40a |
[60]
|
Andersen JK. Oxidative stress in neurodegeneration:cause or consequence? Nat Med, 2004; 10, S18-25. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201503016 |
[61]
|
Wise KC, Manna SK, Yamauchi K, et al. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment. In Vitro Cell Dev Biol Anim, 2005; 41, 118-23. doi: 10.1290/0501006.1 |
[62]
|
Soulsby ME, Phillips B, Chowdhury P. Brief communication:Effects of soy-protein diet on elevated brain lipid peroxide levels induced by simulated weightlessness. Ann Clin Lab Sci, 2004; 34, 103-6. http://cn.bing.com/academic/profile?id=2f2ee15513efee0f920d0a76606676a3&encoded=0&v=paper_preview&mkt=zh-cn |
[63]
|
Chowdhury P, Soulsby M. Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet. Ann Clin Lab Sci, 2002; 32, 188-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4de604ad43d4cd15e75d6748802e7b36 |
[64]
|
Wang T, Chen H, Lv K, et al. Activation of HIF-1alpha and its downstream targets in rat hippocampus after long-term simulated microgravity exposure. Biochem Biophys Res Commun, 2017; 485, 591-7. doi: 10.1016/j.bbrc.2016.12.078 |
[65]
|
Zhang Y, Wang Q, Chen H, et al. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats. Biomed Res Int, 2018; 2018, 2547532. http://cn.bing.com/academic/profile?id=d874da356e257b2fd4a92b82f9184f38&encoded=0&v=paper_preview&mkt=zh-cn |
[66]
|
Cervantes JL, Hong BY. Dysbiosis and Immune Dysregulation in Outer Space. Int Rev Immunol, 2016; 35, 67-82. http://cn.bing.com/academic/profile?id=23b28ff73bdcb5ee11dc6f1b7dcaf5de&encoded=0&v=paper_preview&mkt=zh-cn |
[67]
|
Crucian B, Simpson RJ, Mehta S, et al. Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun, 2014; 39, 23-32. doi: 10.1016/j.bbi.2014.01.011 |
[68]
|
Taylor PW, Sommer AP. Towards rational treatment of bacterial infections during extended space travel. Int J Antimicrob Agents, 2005; 26, 183-7. doi: 10.1016/j.ijantimicag.2005.06.002 |
[69]
|
Kaur I, Simons ER, Castro VA, et al. Changes in neutrophil functions in astronauts. Brain Behav Immun, 2004; 18, 443-50. doi: 10.1016/j.bbi.2003.10.005 |
[70]
|
Kaur I, Simons ER, Castro VA, et al. Changes in monocyte functions of astronauts. Brain Behav Immun, 2005; 19, 547-54. doi: 10.1016/j.bbi.2004.12.006 |
[71]
|
Wang C, Luo H, Zhu L, et al. Microgravity inhibition of lipopolysaccharide-induced tumor necrosis factor-alpha expression in macrophage cells. Inflamm Res, 2014; 63, 91-8. doi: 10.1007/s00011-013-0676-2 |
[72]
|
Novoselova EG, Lunin SM, Khrenov MO, et al. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology, 2015; 220, 500-9. doi: 10.1016/j.imbio.2014.10.021 |
[73]
|
Suzumura A, Sawada M, Marunouchi T. Selective induction of interleukin-6 in mouse microglia by granulocyte-macrophage colony-stimulating factor. Brain Res, 1996; 713, 192-8. doi: 10.1016/0006-8993(95)01535-3 |
[74]
|
Chao CC, Hu S, Peterson PK. Modulation of human microglial cell superoxide production by cytokines. J Leukoc Biol, 1995; 58, 65-70. doi: 10.1002/jlb.1995.58.issue-1 |
[75]
|
Chen L, Tao Y, Jiang Y. Apelin activates the expression of inflammatory cytokines in microglial BV2 cells via PI-3K/Akt and MEK/Erk pathways. Sci China Life Sci, 2015; 58, 531-40. doi: 10.1007/s11427-015-4861-0 |
[76]
|
Cloutier A, Ear T, Borissevitch O, et al. Inflammatory cytokine expression is independent of the c-Jun N-terminal kinase/AP-1 signaling cascade in human neutrophils. J Immunol, 2003; 171, 3751-61. doi: 10.4049/jimmunol.171.7.3751 |
[77]
|
Chun SY, Lee KS, Nam KS. Refined Deep-Sea Water Suppresses Inflammatory Responses via the MAPK/AP-1 and NF-kappaB Signaling Pathway in LPS-Treated RAW 264. 7 Macrophage Cells. Int J Mol Sci, 2017; 18. https://www.researchgate.net/publication/321688427_Refined_Deep-Sea_Water_Suppresses_Inflammatory_Responses_via_the_MAPKAP-1_and_NF-kB_Signaling_Pathway_in_LPS-Treated_RAW_2647_Macrophage_Cells |
[78]
|
Lee WS, Lee EG, Sung MS, et al. Kaempferol inhibits IL-1beta-stimulated, RANKL-mediated osteoclastogenesis via downregulation of MAPKs, c-Fos, and NFATc1. Inflammation, 2014; 37, 1221-30. doi: 10.1007/s10753-014-9849-6 |
[79]
|
Patil RH, Babu RL, Naveen Kumar M, et al. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells. Inflammation, 2016; 39, 138-47. doi: 10.1007/s10753-015-0232-z |
[80]
|
Xin N, Li YJ, Li X, et al. Dragon's blood may have radioprotective effects in radiation-induced rat brain injury. Radiat Res, 2012; 178, 75-85. doi: 10.1667/RR2739.1 |
[81]
|
Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci, 2005; 25, 2566-75. doi: 10.1523/JNEUROSCI.4998-04.2005 |
[82]
|
Hartlage-Rubsamen M, Lemke R, Schliebs R. Interleukin-1beta, inducible nitric oxide synthase, and nuclear factor-kappaB are induced in morphologically distinct microglia after rat hippocampal lipopolysaccharide/interferon-gamma injection. J Neurosci Res, 1999; 57, 388-98. doi: 10.1002/(SICI)1097-4547(19990801)57:3<>1.0.CO;2-V |