[1]
|
Bhattacharya S, Srinivasan K, Abdisalaam S, et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res, 2017; 45, 4590-605. doi: 10.1093/nar/gkx126 |
[2]
|
Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice. Nature, 2017; 541, 222-7. http://www.docin.com/p-1833029321.html |
[3]
|
Yu L, Shang ZF, Abdisalaam S, et al. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments. Nucleic Acids Res, 2016; 44, 8842-54. doi: 10.1093/nar/gkw746 |
[4]
|
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol, 2016; 58, 14-25. doi: 10.1016/j.semcdb.2016.01.045 |
[5]
|
McFadden CH, Hallacy TM, Flint DB, et al. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells. Int J Radiat Oncol, 2016; 96, 221-7. doi: 10.1016/j.ijrobp.2016.04.007 |
[6]
|
McFadden C, Flint D, Sadetaporn D, et al. A Portable Confocal Microscope to Image Live Cell Damage Response Induced by Therapeutic Radiation. Med Phys, 2016; 43, 3824. doi: 10.1118/1.4957904/abstract |
[7]
|
Sadetaporn D, Flint D, McFadden C, et al. Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells. Med Phys, 2016; 43, 3617. http://www.ncbi.nlm.nih.gov/pubmed/28046843 |
[8]
|
Hao W, Bernard K, Patel N, et al. Infection and propagation of human rhinovirus C in human airway epithelial cells. Journal of virology, 2012; 86, 13524-32. doi: 10.1128/JVI.02094-12 |
[9]
|
Kimura W, Xiao F, Canseco DC, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart (vol 523, pg 226, 2015). Nature, 2016; 532. http://www.ncbi.nlm.nih.gov/pubmed/26098368 |
[10]
|
Su FT, Bhattacharya S, Abdisalaam S, et al. Replication stress induced site-specific phosphorylation targets WRN to the ubiquitin-proteasome pathway. Oncotarget, 2016; 7, 46-65. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807982/ |
[11]
|
Zhu J, Su F, Mukherjee S, et al. FANCD2 influences replication fork processes and genome stability in response to clustered DSBs (vol 14, pg 1809, 2015). Cell Cycle, 2016; 15, 2377. doi: 10.1080/15384101.2016.1222785 |
[12]
|
Bunch H, Lawney BP, Lin YF, et al. Transcriptional elongation requires DNA break-induced signalling. Nat Commun, 2015; 6, 10191. doi: 10.1038/ncomms10191 |
[13]
|
Kimura W, Xiao F, Canseco DC, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature, 2015; 523, 226-43. doi: 10.1038/nature14582 |
[14]
|
Xue G, Ren Z, Grabham PW, et al. Reprogramming mediated radio-resistance of 3D-grown cancer cells. J Radiat Res, 2015; 56, 656-62. doi: 10.1093/jrr/rrv018 |
[15]
|
Roskelley CD, Desprez PY, Bissell MJ. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A, 1994; 91, 12378-82. doi: 10.1073/pnas.91.26.12378 |
[16]
|
Le Beyec J, Xu R, Lee SY, et al. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res, 2007; 313, 3066-75. doi: 10.1016/j.yexcr.2007.04.022 |
[17]
|
Lelievre SA. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. Biochim Biophys Acta, 2009; 1790, 925-35. doi: 10.1016/j.bbagen.2009.03.013 |
[18]
|
Hackethal J, Muhleder S, Hofer A, et al. An Effective Method of Atelocollagen Type 1/3 Isolation from Human Placenta and Its In Vitro Characterization in Two-Dimesional and Three-Dimensional Cell Culture Applications. Tissue Engineering Part C, Methods, 2017; 23, 274-85. doi: 10.1089/ten.tec.2017.0016 |
[19]
|
Sieh S, Taubenberger AV, Rizzi SC, et al. Phenotypic Characterization of Prostate Cancer LNCaP Cells Cultured within a Bioengineered Microenvironment. Plos One, 2012; 7, e40217. doi: 10.1371/journal.pone.0040217 |
[20]
|
Sempere LF, Gunn JR, Korc M. A novel 3-dimensional culture system uncovers growth stimulatory actions by TGF beta in pancreatic cancer cells. Cancer Biol Ther, 2011; 12, 198-207. doi: 10.4161/cbt.12.3.15979 |
[21]
|
Rangarajan A, Hong SJ, Gifford A, et al. Species-and Cell Type-Specific Requirements for Cellular Transformation (vol 6, pg 171, 2004). Cancer Cell, 2013; 24, 394-8. doi: 10.1016/j.ccr.2013.08.028 |
[22]
|
Rangarajan A, Hong SJ, Gifford A, et al. Species-and cell type-specific requirements for cellular transformation. Cancer Cell, 2004; 6, 171-83. doi: 10.1016/j.ccr.2004.07.009 |
[23]
|
Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell, 2007; 130, 601-10. doi: 10.1016/j.cell.2007.08.006 |
[24]
|
Stetten AZ, Moraca G, Corcoran TE, et al. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. J Colloid Interf Sci, 2016; 484, 270-8. doi: 10.1016/j.jcis.2016.08.076 |
[25]
|
Aufderheide M, Forster C, Beschay M, et al. A new computer-controlled air-liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium. Exp Toxicol Pathol, 2016; 68, 77-87. doi: 10.1016/j.etp.2015.10.001 |
[26]
|
Okubo T, Hosaka M, Nakae D. In vitro effects induced by diesel exhaust at an air-liquid interface in a human lung alveolar carcinoma cell line A549. Exp Toxicol Pathol, 2015; 67, 383-8. doi: 10.1016/j.etp.2015.03.004 |
[27]
|
Jing XF, Park JH, Peters TM, et al. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicol in Vitro, 2015; 29, 502-11. doi: 10.1016/j.tiv.2014.12.023 |
[28]
|
Zhu JY, Su FT, Mukherjee S, et al. FANCD2 influences replication fork processes and genome stability in response to clustered DSBs. Cell Cycle, 2015; 14, 1809-22. doi: 10.1080/15384101.2015.1036210 |
[29]
|
Bochkov YA, Palmenberg AC, Lee WM, et al. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med, 2011; 17, 627. doi: 10.1038/nm.2358 |
[30]
|
Canseco DC, Kimura W, Garg S, et al. Human Ventricular Unloading Induces Cardiomyocyte Proliferation. J Am Coll Cardiol, 2015; 65, 892-900. doi: 10.1016/j.jacc.2014.12.027 |
[31]
|
Vasca V, Vasca E, Freiman P, et al. Keratin 5 expression in squamocellular carcinoma of the head and neck. Oncol Lett, 2014; 8, 2501-4. doi: 10.3892/ol.2014.2591 |
[32]
|
Kouklis PD, Hutton E, Fuchs E. Making a Connection-Direct Binding between Keratin Intermediate Filaments and Desmosomal Proteins. J Cell Biol, 1994; 127, 1049-60. doi: 10.1083/jcb.127.4.1049 |
[33]
|
Osmani N, Labouesse M. Remodeling of keratin-coupled cell adhesion complexes. Current opinion in cell biology, 2015; 32, 30-8. doi: 10.1016/j.ceb.2014.10.004 |
[34]
|
Han TH, Chung JY, Hwang ES, et al. Detection of human rhinovirus C in children with acute lower respiratory tract infections in South Korea. Arch Virol, 2009; 154, 987-91. doi: 10.1007/s00705-009-0383-z |
[35]
|
Lau SKP, Yip CCY, Lin AWC, et al. Clinical and Molecular Epidemiology of Human Rhinovirus C in Children and Adults in Hong Kong Reveals a Possible Distinct Human Rhinovirus C Subgroup. J Infect Dis, 2009; 200, 1096-103. doi: 10.1086/599179 |
[36]
|
Linsuwanon P, Payungporn S, Samransamruajkit R, et al. High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infection, 2009; 59, 115-21. doi: 10.1016/j.jinf.2009.05.009 |
[37]
|
Bochkov YA, Watters K, Ashraf S, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. P Natl Acad Sci USA, 2015; 112, 5485-90. doi: 10.1073/pnas.1421178112 |
[38]
|
Bochkov YA, Palmenberg AC, Lee WM, et al. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med, 2011; 17, 627-32. doi: 10.1038/nm.2358 |
[39]
|
Ashraf S, Brockman-Schneider R, Gern JE. Propagation of rhinovirus-C strains in human airway epithelial cells differentiated at air-liquid interface. Methods Mol Biol, 2015; 1221, 63-70. doi: 10.1007/978-1-4939-1571-2 |
[40]
|
Mello C, Aguayo E, Rodriguez M, et al. Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob Agents Chemother, 2014; 58, 1546-55. doi: 10.1128/AAC.01746-13 |
[41]
|
Lee FE, Walsh EE, Falsey AR, et al. Human infant respiratory syncytial virus (RSV)-specific type 1 and 2 cytokine responses ex vivo during primary RSV infection. J Infect Dis, 2007; 195, 1779-88. doi: 10.1086/522480 |
[42]
|
Fraenkel DJ, Bardin PG, Sanderson G, et al. Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med, 1995; 151, 879-86. http://www.ncbi.nlm.nih.gov/pubmed/7881686 |
[43]
|
Garofalo RP, Hintz KH, Hill V, et al. A comparison of epidemiologic and immunologic features of bronchiolitis caused by influenza virus and respiratory syncytial virus. J Med Virol, 2005; 75, 282-9. doi: 10.1002/(ISSN)1096-9071 |
[44]
|
Jamaluddin M, Choudhary S, Wang S, et al. Respiratory syncytial virus-inducible BCL-3 expression antagonizes the STAT/IRF and NF-kappaB signaling pathways by inducing histone deacetylase 1 recruitment to the interleukin-8 promoter. J Virol, 2005; 79, 15302-13. doi: 10.1128/JVI.79.24.15302-15313.2005 |
[45]
|
Legg JP, Hussain IR, Warner JA, et al. Type 1 and type 2 cytokine imbalance in acute respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med, 2003; 168, 633-9. doi: 10.1164/rccm.200210-1148OC |
[46]
|
Garofalo RP, Patti J, Hintz KA, et al. Macrophage inflammatory protein-1alpha (not T helper type 2 cytokines) is associated with severe forms of respiratory syncytial virus bronchiolitis. J Infect Dis, 2001; 184, 393-9. doi: 10.1086/jid.2001.184.issue-4 |
[47]
|
Welliver RC, Garofalo RP, Ogra PL. Beta-chemokines, but neither T helper type 1 nor T helper type 2 cytokines, correlate with severity of illness during respiratory syncytial virus infection. Pediatr Infect Dis J, 2002; 21, 457-61. doi: 10.1097/00006454-200205000-00033 |