-
Our analysis was performed based on data concerning PM10 and PM10-bound As, Cd, Ni, Pb, and B(a)P concentrations, which were measured across the whole country between 2002 and 2014 under the Polish National Air Monitoring Program. The number of air monitoring stations that provide such measurements is presented in Table S1 (available at www.besjournal.com). The episodes were selected from a series of daily (24 h) PM10 concentrations registered within the mentioned period. At present, clearly defined thresholds of PM10 daily concentrations that classify a given day as a smog episode are not available[16]. Although a couple of examples are available where these thresholds were defined by appropriate statistical processing of the daily data series[17-18], none of them can be treated as a gold selection standard. Before setting the selection criteria for these episodes, each series of the PM10 concentrations from each monitoring site was directed to distribution testing by using the Shapiro-Wilk test (P = 0.05). The assumption was that if the log-normal distribution was prevailing (i.e., more than 50% of all cases), then the median value (or arbitrarily defined percentile) of the annually averaged daily concentrations could be set as a criteria of episode occurrence in a given location[10]. If, however, the distribution was mostly normal (Gaussian), then each PM10 concentration that exceeded the value of the arithmetic mean from the annually averaged daily concentrations should be treated as an episode[19]. A summary of the results from this analysis is given in Table 1. In 32% of all the tested cases, the statistical distribution of PM10 was log-normal (P < 0.05). The lack of a clear dominance of any of the tested distributions did not allow us to use the statistical method as a criterion for episode selection. Therefore, in accordance with the literature[20], the exceedance of the average daily PM10 concentration above 50 μg/m3 (the 24 h threshold value) was set as a criterion for qualifying this as an episode day. We looked for large-scale episodes only. Thus, we assumed that country-level smog occurs when the 50 μg/m3 concentration was exceeded in at least 50% of all monitoring stations at the same day. On the basis of these criteria, 348 days were selected as large-scale smog events in the 2002-2014 period. This finding means that during the 12-year period, more than 50% of all air monitoring stations in Poland registered a PM10 daily concentration of above the permissible level of 50 μg/m3 over a total of 348 days. The greatest number of such episodes occurred in 2011, with 51 episodes, and the least number of episodes occurred in 2004, with only one episode (Table 1). Assuming that the winter season in Poland lasts from November to March, 307 episodes were assigned to the winter/cold season (the heating season).
Table 1. Results of Testing the Probability Distribution of PM10 Daily (24 h) Concentrations;
Monitoring Period Total Number of Air Monitoring Stations* Number of Stations at Which the Daily PM10 Data Series Met the Criterion of Normal Distribution Number of Stations at Which the Daily PM10 Data Series Met the Criterion of Log-normal Distribution Number of Summer/Winter Spisodes Within Calendar Year Number of PM10 Episodes in Each Calendar Year 2002 17 0 9 6/7 13 2003 54 0 22 0/7 7 2004 121 0 44 0/1 1 2005 166 1 68 6/11 19 2006 163 0 59 1/23 24 2007 173 0 64 2/12 14 2008 164 0 56 2/10 12 2009 167 0 60 7/20 26 2010 150 0 35 0/43 43 2011 143 0 30 5/46 51 2012 151 0 14 2/51 53 2013 141 0 52 5/40 45 2014 158 0 53 4/36 40 Note. *All Polish air monitoring stations that provide the measurements of PM10 concentration by using automated or manual methods from http://powietrze.gios.gov.pl[ 21 ] (Supplementary materials available at www.besjournal.com).In the second part of the analysis, we prepared the database, including the average daily concentrations of PM10-bound As, Cd, Pb, Ni, and B(a)P measured in Poland between 2002-2014. This database was divided into two parts: the first part covers the days of episodes, and the second part covers the rest of the measurement period. In each part of the data, the average daily concentrations were spatially aggregated within agglomerations (cities within provinces with more than 250, 000 residents), cities within provinces and outside the agglomerations with a total population of more than 100, 000, and areas located within provinces but lying outside the cities and agglomerations (hereafter referred to as remaining areas for more details, see the Supplementary materials available at www.besjournal.com).
Annually averaged concentrations of PM10-bound As, Cd, Ni, Pb, and B(a)P were further compared with the EU air quality standards concerning human health protection, namely, EU Directive 2004/107/EC[22] and air quality recommendations[23-24]. Significant differences in the mean concentrations of metals and B(a)P between periods with and without the episodes were checked. Given that the averaged multi-annual concentration data tend to follow a normal distribution (Shapiro-Wilk test, P > 0.05), the difference between the pair of measurements (di = xwith E -xwithout E) was tested by using Student's t-test for dependent samples (P = 0.05). This difference was further used to verify the hypothesis that the average for each difference in the studied population is 0 (H0). The significance value in the Levene's test was greater than our alpha (P > 0.05). Thus, we cannot reject the null hypothesis (no difference) for the assumption of the variance homogeneity, which means that concentrations were drawn from populations with the same variance (Tables 3-5).
Table 2. Inhalation Unit Risks and Cancer Potency Factors for Risk Analysis[29]
Carcinogen Inhalation Unit Risk (µg/m3)−1 Inhalation Slope Factor (CSFi) (mg/kg×d)−1 Arsenic 3.3 × 10-3 1.2 × 101 Cadmium 4.2 × 10-3 1.5 × 101 Lead 1.2 × 10-5 4.2 × 10-2 Nickel (nickel oxide) 2.6 × 10-4 9.1 × 10-1 B(a)P 1.1 × 10-3 3.9 × 100 Table 3. Average concentrations (ng/m3) of As, Cd, Pb, Ni, and B(a)P in 12 Polish agglomerations in the 2002–2014 period. The significance (t-test, P < 0.05) and variance homogeneity (Levene's test) between mean concentrations in periods with episodes versus those without episodes are shown.
Constituents AGGLOMERATIONS Levene's test P-Value paired t-test Ds. Kp Lb Ld Mp Mz Pd Pm Sl-G Sl-RJ Wp Zp Mean Std.Dev F Sig As WITH_E 2.6 3.3 1.0 2.1 1.8 0.4 0.6 1.4 2.4 2.9 1.8 1.3 1.8 0.9 0.1237 0.7283 0.00042 As WITHOUT_E 2.4 2.9 0.9 1.9 1.7 0.3 0.6 1.3 2.1 2.6 1.7 1.0 1.6 0.8 Cd WITH_E 0.6 1.1 0.5 0.9 1.4 0.7 0.7 0.4 1.1 1.0 0.7 0.7 0.8 0.3 0.1151 0.7375 0.000792 Cd WITHOUT_E 0.6 1.0 0.4 0.8 1.3 0.7 0.7 0.4 1.0 0.9 0.6 0.6 0.7 0.3 Pb WITH_E 21.7 45.0 12.5 22.5 45.0 31.9 8.4 15.8 91.4 43.0 21.2 29.9 32.2 22.1 0.0141 0.9065 0.005969 Pb WITHOUT_E 19.9 38.0 12.1 20.0 44.0 31.0 7.7 14.8 90.4 40.0 19.7 29.3 30.7 22.3 Ni WITH_E 3.6 2.6 1.7 2.3 3.1 5.2 1.2 2.6 2.3 2.0 1.2 3.4 2.6 1.1 0.0002 0.9887 0.003426 Ni WITHOUT_E 3.6 2.6 1.7 2.2 3.0 5.1 1.2 2.7 2.3 1.9 1.2 3.3 2.5 1.1 BaP WITH_E 3.9 3.4 0.5 7.9 4.3 1.7 2.1 1.8 7.9 12.3 3.2 1.6 4.1 1.5 0.8578 0.3643 0.025991 BaP WITHOUT_E 3.0 3.4 0.5 6.8 2.6 1.4 1.9 1.4 6.2 8.5 3.2 1.6 3.5 2.5 Note. The significance (t-test, P < 0.05) and variance homogeneity (Levene’s test) between mean concentrations in periods with episodes versus those without episodes are shown. Ds-Wroctawska Kp-Bydgoska, Lb-Lubelska, Ld-todzka, Mp-Krakowska, Mz-Warszawska, Pd–Białostocka, Pm–Trójmiejska, Sl-G–Górnośląska, Sl-RJ–Rybnicko-Jastrzębska, Wp–Poznańska, Zp–Szczecińska. Table 4. Average concentrations (ng/m3) of As, Cd, Pb, Ni, and B(a)P in the 16 remaining (other than cities and agglomerations) areas of Poland in the 2002-2014 period.
Constituents REMAINING AREAS Levene's test P-Value paired t-test Ds. Kp Lb Lu Ld Mp Mz Op Pk Pd Pm Sl Sk Wm Wp Zp Mean Std Dev F Sig As WITH_E 3.8 1.9 0.4 3.4 2.0 1.5 0.6 2.3 1.4 0.3 1.4 3.0 - 1.1 2.3 0.8 1.7 1.1 0.1237 0.7283 0.001421 As WITHOUT_E 3.6 1.8 0.4 3.3 1.8 1.4 0.6 2.4 1.2 0.3 1.4 2.8 - 1.0 2.1 0.7 1.6 1.0 Cd WITH_E 1.0 1.0 0.7 0.6 0.6 1.1 0.6 0.5 1.1 - 0.4 1.4 1.3 0.2 0.8 0.5 0.8 0.3 0.1151 0.7375 0.000003 Cd WITHOUT_E 0.9 0.9 0.6 0.6 0.6 1.0 0.5 0.4 1.0 - 0.4 1.3 1.3 0.2 0.8 0.5 0.7 0.3 Pb WITH_E 40.0 20.7 8.3 24.3 21.0 31.6 20.7 20.6 27.3 13.0 18.4 58.7 - 5.4 20.7 17.4 23.1 13 0.0141 0.9065 0.000054 Pb WITHOUT_E 39.0 20.2 7.8 21.9 19.0 28.8 19.9 19.9 25.4 12.8 17.3 57.0 - 4.9 18.6 16.7 22.0 12.6 Ni WITH_E 3.8 1.6 2.0 2.8 2.1 3.7 2.4 2.4 1.4 0.5 4.1 5.0 3.8 0.7 3.1 3.4 2.6 1.1 0.0002 0.9887 0.079302 Ni WITHOUT_E 3.9 1.5 2.0 2.8 2.0 3.7 2.4 2.2 1.4 0.5 4.1 3.8 3.3 0.6 3.1 3.3 2.6 1.2 BaP WITH_E 4.8 3.2 2.6 4.5 9.8 7.7 3.6 4.6 5.5 1.8 5.1 7.9 5.2 0.6 2.5 3.4 4.1 2.3 0.8578 0.3643 0.003419 BaP WITHOUT_E 4.0 3.1 2.4 3.3 7.6 4.2 2.6 2.1 3.6 1.8 3.4 6.9 4.3 2.1 2.5 2.7 4.0 1.8 Note. The significance (t-test, P < 0.05) and variance homogeneity (Levene's test) between mean concentrations in periods with episodes versus those without episodes are shown. Ds.–Dolnośląska, Kp–Kujawsko-Pomorska, Lb–Lubelska, Lu–Lubuska, Ld-Łódzka, Mp–Krakowska, Mz-Mazowiecka, Op–Opolska, Pk–Podkarpacka, Pd–Podlska, Pm–Pomorska, Sl–Śląska, Sk–Świętokrzyska, Wm–Warmińsko-Mazurska, Wp–Wielkopolska, Zp–Zachodniopomorska. The lack of data "-". Table 5. Average (ng/m3) concentrations of As, Cd, Pb, Ni, and B(a)P in 18 Polish cities in the 2002-2014 period.
Constituents CITIES Levene's test P-Value paired t-test Ds. Leg Ds. Walbrz Kp Toru Kp Wlocl Lu Gorz Lu Ziel Mp Tar Mz Plock Mz Radom Op Opole Pk Rzesz Sl Biel Sl Czesto Sk Kiel Wm Elb Wm Olszty Wp Kalisz Zp Kosz Mean Std Dev F Sig As WITH_E 8.3 2.2 1.3 1.0 1.4 3.7 1.2 0.7 0.4 2.5 1.5 2.2 3.0 1.9 1.7 1.4 2.2 0.6 2.1 1.8 0.0064 0.9367 0.000108 As WITHOUT_E 8.0 2.2 1.2 0.9 1.4 3.7 1.1 0.7 0.3 2.4 1.3 2.0 2.7 1.6 1.7 1.3 2.0 0.5 1.9 1.7 Cd WITH_E 1.2 0.8 1.2 1.4 0.5 0.5 1.6 0.8 0.4 1.8 0.8 0.7 1.1 1.3 0.2 0.2 0.6 0.5 0.9 0.5 0.0568 0.8129 0.000549 Cd WITHOUT_E 1.1 0.7 1.2 1.4 0.5 0.4 1.6 0.8 0.4 1.8 0.7 0.6 1.0 1.1 0.2 0.2 0.5 0.4 0.8 0.5 Pb WITH_E 144.0 25.8 12.4 27.5 24.6 25.7 22.9 27.1 18.7 38.5 23.6 25.4 37.0 34.7 6.9 4.5 15.6 14.4 29.4 30.1 0.0009 0.9760 0.000001 Pb WITHOUT_E 142.0 24.1 11.6 25.7 24.0 24.8 21.8 26.6 16.1 35.8 19.7 22.2 35.0 32.2 6.0 4.0 13.4 13.4 27.7 30.0 Ni WITH_E 3.3 6.4 1.9 2.7 3.4 2.5 2.1 2.7 1.3 5.9 1.1 1.9 2.5 2.2 1.0 0.7 1.9 3.0 2.6 1.5 0.0176 0.8949 0.021427 Ni WITHOUT_E 2.7 6.4 1.8 2.7 3.3 2.4 2.1 2.7 1.3 5.6 1.1 1.9 2.5 2.1 1.0 0.7 1.8 3.0 2.5 1.5 BaP WITH_E 6.6 5.0 2.3 2.3 3.9 1.9 3.5 4.7 4.3 7.6 2.7 5.3 3.1 5.8 2.9 1.3 3.5 3.2 3.9 1.7 0.8595 0.3603 0.000958 BaP WITHOUT_E 5.2 4.7 1.9 2.3 2.1 1.6 3.5 4.1 3.8 6.4 2.7 3.1 2.9 4.7 2.9 1.1 3.5 2.4 3.3 1.4 Note. The significance (t-test, P < 0.05) and variance homogeneity (Levene's test) between mean concentrations in periods with episodes versus those without episodes are shown. DSLeg-Legnica, DsWalbrz-Wałbrzych, KpToru-Toruń, KpWlocl-Włocławek, LuGorz-Gorzów, LuZiel-Zielona Góra, MpTar-Tarnów, MzPlock-Płock, MzRadom-Radom, OpOpole-Opole, PkRzesz-Rzeszów, SlBiel-Bielsko-Biała, SlCzesto-Częstochowa, SkKiel-Kielce, WmElb-Elbląg, WmOlszty-Olsztyn, Wp-Kalisz-Kalisz, ZpKosz-Koszalin. -
Lung cancer risk that resulted from the exposure to PM10-bound As, Cd, Pb, Ni, and B(a)P was assessed using the deterministic approach[25] according to the US EPA[26] reference methodology. The analysis was performed for periods with and without episodes separately for agglomerations, cities, and remaining areas. The exposure scenario includes the lifetime inhalation exposure of a hypothetical adult Polish resident (without division between male or female).
-
The active dose of inhaled carcinogens, namely, metals and B(a)P, was assumed to be equal to the airborne concentration and calculated following Equation 1:
$$ {E_i} = {C_i} \times IR $$ (1) Where Ei – daily exposure level to ith carcinogen in the adult age group (ng/d), Ci– concentration of ith carcinogen in the air (ng/m3), IR-inhalation rate among adults; the 95th percentile of IR for people 31 to 41 years old is 21.4 m3/day, following US EPA[27].
-
The possibility of additional lung cancer risk was estimated using Incremental Lifetime Cancer Risk (ILCR)[28]. ILCR represents the probability of an individual to develop cancer over his or her lifetime from exposure to PM10-bound metals and B(a)P (for example, 1:100, 000 indicates one case of cancer in a population of 100, 000). The ILCR value was calculated on the basis of Equation 2, and CSF values for carcinogenic pollutants were used in accordance with the Office of Environmental Health Hazard Assessment database (Table 2)[29]. The risk to humans was calculated independently for each pollutant and then summarized. The cumulative lifetime cancer risk as a result of exposure to multiple carcinogens is obtained. This cumulative ICLR was compared with the threshold value. The level of acceptable cancer risk for regulatory purposes is considered within the range of 1 × 10-6 to 1 × 10-4[30].
$$ ILCR = \frac{{{E_i} \times EF \times ED \times \left( {CS{F_i}} \right)}}{{BW \times AT}} \times cf $$ (2) Where ILCR– incremental lifetime cancer risk resulting from a specific dose of carcinogen, Ei– daily exposure level to ith carcinogen in the adult age group (ng/d), CSFi– slope factor for ith carcinogen (kg × d/mg), EF– exposure frequency (day/year)[31], ED– exposure duration (year) (human lifespan: 70 years), AT– average time for carcinogens AT = 70 (year) x 365 (day/year)[32], BW– body weight (70 kg)[27], cf– conversion factor (10−6) (ng/mg).
To check whether PM10 episodes significantly increase the overall health risk from PM10-related metals and B(a)P, t-test for paired data was performed in accordance with the scheme presented in the section 'Selection of Episodes'. This approach involves comparing the P-value with the significance level (P = 0.05) and rejecting the null hypothesis when the P-value is less than the significance level.
-
In Poland air pollution assessment is provided in 46 zones. The following zones include:
12 agglomerations: Wrocławska (DsWrocWie; DsWrocWybCon; DsWrocOrzech); Bydgoska (KpBydWarszaw; KpBydPlPozna; KpBydgUjejskiego; KpBydgWPola); Lubelska (LbLublin_Krasn; LbLubObywate; LbLubSliwins); Łódzka (LdLodzCzerni; LdLodzLegion; LdLodzRudzka; LdLodzWIOSARubinst; LdPabiKilins), Krakowska (MpKrakBulwar; MpKrakowWIOSPrad6115; MpKrakBujaka); Warszawska (MzWarAKrzywWSSE; MzWarAlNiepo; MzWarszZelazWSSE; MzWarZeganWSSE; MzWarszBorKomWSSE; MzWarAKrzywo; MzWarTolstoj); Białostocka (PdBialWaszyn); Trójmiejska (Pm.01w.01m; Pm.00.s237m; PmGdaGleboka; PmGdaLecz08m; PmGdyJozBema); Górnośląska (SlDabro1000L; SlKatoKossut; SlZabSkloCur); Rybnicko-Jastrzębska (SlRybniBorki; SlZorySikors); Poznańska (WpPoznanPM10szpital; WpPoznChwial); Szczecińska (ZpSzczecinWSSE; ZpSzczPils02; ZpSzczAndr01)
18 cities with the number of residents above 100 000: Legnica (DsLegAlRzecz); Wałbrzych (DsWalbrzWyso); Toruń (KpToruDziewu; KpTorunSzpMiejski); Włocławek (KpWloclOkrze; KpWloclLady); Gorzów Wielkopolski (LuGorzPilsud; LuGorzKosGdy); Tarnów (MpTarnowWIOSSoli6303; MpTarBitStud); Płock (MzPlockKolegWSSE; MzPlocKroJad); Radom (MzRadomCzWSSE; MzRad25Czerw); Opole (OpOpole246; OpOpoleOsAKr); Rzeszów (PkRzeszWIOSSzop; PkRzeszRejta); Kalisz (WpKaliszPM10; WpKaliSawick); Zielona Góra (LuZielKrotka); Bielsko-Biała (SlBielKossak); Częstochowa (SlCzestoBacz); Kielce (SkKielKusoci; SkKielJagiel); Elbląg (WmElbBazynsk); Olsztyn (WmOlsztyWSSE_Zolnier; WmOlsPuszkin); Koszalin (ZpKoszalinWSSE; ZpKoszSpasow)
16 remaining areas located within provinces but lying outside the agglomerations and cities: Dolnośląskie (DsCzerStraza; DsDzialoszyn; DsJelw05; DsPolKasztan; DsZgorBohGet; DsSzczKopPM; DsOlawZolnAK; DsOsieczow21; DsNowRudSreb; DsSzczaKolej; DsJelGorSoko; DsOlawZolnAK; DsGlogWiStwo); Kujawsko-pomorskie (KpCiechTezni; KpGrudzIkara; KpInowrSolan; KpNaklSkargi; KpWabrzstmob; KpDAFGolub; KpSepolno; KpDAFChelmza; KpDAFRadzyn; KpZielBoryTu; KpGrudSienki; KpKoniczynka; KpTuchPiast); Lubelskie (LbBiaPodOrze; LbChelJagiel; LbKrasKoszar; LbLeczna1000Lecia; LbRadzPodSit; LbRejowiecFabrWIOS; LbZamoHrubie; LbTomaszowLubWIOS); Lubuskie (LuWsKaziWiel; LuZaryWIOS_MAN; LuSulecDudka; LuZarySzyman); Łódzkie (LdKutnoWIOSMWilcza; LdOpocPlKosc; LdPioTrSienk; LdBrzeReform; LdRadomsRoln; LdRawaNiepod; LdSierGrunwa; LdSkiernWIOSMJagiell; LdToMaSwAnto; LdZduWoKrole; LdOpocPlKosc; LdWieluPOW12; LdLowiczSien; LdPioTrKraPr; LdSkierKonop); Małopolskie (MpTrzebiWIOSPils0303; MpSkawOsOgro; MpBochniWSSEKons0105; MpChrzanWSSEGrzy0301; MpNiepo3Maja; MpNoTargWSSESzaf1102; MpNSaczWSSETarn6202; MpProszWIOSKrol1404; MpWadowiWIOSPSka1805; MpBochniWSSEKons0105; MpGorlKrasin; MpTuchChopin; MpNoSaczNadb; MpNSaczWIOSPija6204; MpZakopaSien; MpBochKonfed; MpSuchaBWIOSHand1512; MpTrzebOsZWM; MpBrzeskWIOSWiej0202; MpDabrowWIOSZare0401; MpMiechoWIOSKono0802; MpNowyTaWIOSPows1114; MpOswiecWIOSSnia1302; MpRabkaWIOSChop1113; MpSuchaBWIOSHand1512; MpBukowKolejMOB; MpKetyWyspiaMOB; MpLimanoBoleMOB; MpMysleRynekMOB; MpSlomWolnosMOB; MpSzczawJanaMOB); Mazowieckie (MzOstMazSikorWSSE; MzCiechStrazacka; MzLegZegrzyn; MzNowDwChemWSSE; MzOstrolTargowa; MzOtwockBrzozWSSE; MzPiaseczDworWSSE; MzPruszKraszeWSSE; MzSochPlocWSSE; MzTluszczJKiel MzGranicaKPN; MzMlawOrdona; MzPiasPulask; MzOtwoBrzozo; MzSiedKonars; MzOstroHalle); Opolskie (OpGlubKochan; OpNamys2pyl; OpOlesno3pyl; OpKluczMicki; OpKKozBSmial; OpNysaRodzie; OpZdziePiast); Podkarpackie (PkPrzemWIOSPDom; PkJasloWIOSFlor2; PkMielZaStre; PkNiskoSzkla; PkJarosWIOSJanPawII; PkPrzemyslWIOSMick; PkJasloSikor; PkJarosPruch; PkPrzemGrunw; PkSanoSadowa; PkTarnDabrow; PkDebiGrottg); Podlaskie (PdSuwPulaski); Pomorskie (Pm.06.s712m; Pm.63.s079m; Pm.63.wDSMm; Pm14TCZEw06m; PmWejhPlWejh; PmWladywHallera; Pm.aw07m; PmKosTargo12; PmSlupKniazi; PmSlupOrzesz; PmKwiSportow; PmLebMalcz16; PmLinieKos17; PmMalMicki15; PmGac); Śląskie (SlZywieKoper; SlLublPiasko; SlZawSkloCur; SlRacibRaci_studz; SlCieszCies_dojaz; SlGodGliniki; SlKnurJedNar; SlMyszMiedzi; SlWodziWodz_bogum; SlPszczBoged; SlTarnoLitew; SlGodGliniki); Świętokrzyskie (SkBuskRokosz; SkStaraZlota); Warmińsko-mazurskie (WmDzialdWSSE_Biedraw; WmPuszczaBor; WmGizyckWIOS_Wodoc; WmNiTraugutt; WmIlawAnders); Wielkopolskie (WpKoniWyszyn; WpPilaKusoci; WpLeszno411000; WpGnieznoPM10; WpOstWieWyso; WpGniePaczko; WpLeszKiepur; WpWagrowLipo); Zachodniopomorskie (ZpSwinoujscieWSSE; ZpSzcSzczecinekPSSE; ZpWiduBulRyb; ZpSzczec1Maj; ZpSzcSzczecinek009; ZpMyslZaBram; ZpSzczecPrze).
Table S1. Summary Presenting the Number of Polish Air Monitoring Stations Conducting Measurements of As, Cd, Pb, Ni and B(a)P Concentrations by Type of the Station.
Year Vovoideship Urban background Rural Sub-urban Traffic Industrial As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P 2002 DS 1 1 1 1 1 1 2003 1 3 3 3 1 1 1 1 1 2 1 1 2 1 1 2004 2 6 7 6 2 2 2 2 2 2 1 1 3 1 1 2005 3 10 14 11 3 2 2 2 2 2 1 1 1 1 1 4 1 1 2006 3 12 16 12 3 2 2 2 2 2 1 1 1 1 1 3 1 1 2007 5 14 18 14 5 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2008 5 12 16 12 4 2 2 2 2 2 1 1 1 1 1 1 5 1 1 2009 6 14 14 10 5 1 1 1 1 1 1 5 1 2010 6 6 5 3 6 2 3 2 2 2 1 1 1 5 1 1 2011 6 9 6 6 1 2 1 2 2 1 1 1 1 1 1 4 1 1 2012 8 8 8 8 8 2 2 2 2 2 1 1 1 1 1 1 2013 9 9 9 9 6 2 2 2 2 1 1 1 1 2014 10 10 10 10 11 1 1 1 1 1 1 2002 KP 1 2003 1 2004 1 2 2005 1 1 1 1 2006 2 1 2 1 1 2 2007 1 1 1 1 1 1 1 1 1 1 1 2008 9 8 10 9 1 1 1 1 1 2009 1 1 3 2 1 1 1 1 1 2 2 2 2010 7 8 9 7 1 1 1 1 1 1 1 1 1 1 1 1 2011 3 3 3 2 2 2 2 2 1 2 2 2 2 1 1 2 1 2 2012 4 4 4 3 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2013 3 3 3 4 2 2 2 2 1 3 3 3 2 1 2 2 2 2 2014 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2002 LB 1 2003 1 1 2004 1 2 1 1 1 1 2005 1 1 1 1 1 1 1 2006 3 1 2007 2008 2009 3 5 4 1 2 2 2 2010 2 2 2 2 1 2011 1 1 1 1 2012 1 1 1 1 1 2013 2 2 2 2 1 2014 2 2 2 2 3 2 2002 LU 2003 2004 2005 2006 2007 2008 3 2009 1 2010 1 3 2 1 2011 3 3 3 1 2012 4 4 4 1 2013 5 5 5 1 2014 6 6 6 6 2002 LD 2003 2004 3 2005 3 3 2006 3 3 2007 3 3 2008 3 3 2009 4 5 1 2010 6 6 1 2011 5 6 2012 13 13 1 2013 11 11 1 2014 14 14 14 2002 MP 2003 2004 1 1 1 1 2005 2006 1 2007 2 2 1 2008 9 9 9 9 1 1 1 2009 11 10 10 11 1 2010 9 10 10 10 1 1 1 1 2011 5 6 5 5 1 1 1 1 2012 5 5 5 5 1 1 1 1 2013 4 4 4 4 1 1 1 1 2014 5 5 5 5 18 1 1 1 1 2002 MZ 1 2003 1 3 1 1 1 2004 3 3 3 3 1 1 1 1 2005 2 2 7 2 1 1 1 1 2006 2 2 4 2 5 1 1 1 1 2007 3 2 2 2 13 1 1 1 1 1 1 1 2008 9 8 11 8 1 1 1 1 1 2009 3 2 7 2 1 1 1 1 1 2010 2 2 2 1 1 1 1 1 1 2011 3 2 4 3 1 2012 4 4 4 3 1 2013 4 4 4 4 1 1 2014 4 4 4 4 8 2 1 1 1 2002 OP 2003 3 2004 4 2005 1 1 2006 1 1 2007 2008 3 3 3 1 2009 1 3 2 1 1 2010 3 3 3 2 1 2011 2 1 2012 2 2 2 2 1 2013 2 2 2 2 1 2014 3 3 3 3 2002 PD 2003 1 2004 1 2005 1 1 2006 1 1 2007 1 1 1 1 2008 2 1 1 2009 2 2 2 2010 1 1 1 2011 1 2012 2013 2014 2 2 2 2 2 2002 PK 1 2003 2004 2005 2006 2007 1 1 1 1 2008 1 2 2009 7 7 7 6 2 2010 8 8 8 6 2 2011 4 4 4 4 1 2012 4 4 4 4 1 2013 8 4 4 3 1 2014 4 4 4 4 9 2002 PM 1 2003 2004 2005 2006 2007 7 1 1 2008 8 8 8 1 1 1 2009 7 9 8 8 2 1 2010 8 12 10 10 6 1 1 2011 4 11 9 9 5 1 1 1 2012 4 12 12 12 6 1 1 1 1 1 2013 8 7 7 7 7 1 1 1 1 1 2014 4 10 11 11 10 2 2 2 2 1 1 2002 SL 2003 15 2004 13 2005 2006 2007 2008 2009 15 15 19 15 1 2010 11 11 11 11 1 2011 11 10 10 10 1 2012 11 10 10 10 1 2013 9 8 8 8 2014 10 9 9 9 14 2002 SK 2003 2004 2005 2006 1 2007 1 2008 2009 2 1 2 2010 1 1 1 1 1 2011 1 1 1 1 1 2012 1 1 1 1 1 2013 1 1 1 1 2014 1 1 1 1 3 1 2002 WM 2 2003 2004 2005 2006 2007 2 2 2 2 2008 2 2 2 1 2009 4 3 3 3 1 1 1 1 2010 3 4 3 3 1 1 1 1 1 2011 3 3 3 3 1 1 1 1 1 1 2012 3 2 2 2 1 1 2 1 1 2013 4 3 3 3 1 1 1 2014 3 3 3 3 3 1 1 1 1 1 2002 WP 3 2003 2004 2005 3 3 3 2006 2 4 4 2 2007 1 5 6 6 1 2008 8 8 8 1 2009 3 7 3 7 1 2010 5 5 4 4 1 2011 3 3 4 3 1 2012 4 4 6 4 1 1 2013 5 5 5 5 1 2014 5 4 5 5 6 1 2002 ZP 1 2003 1 2004 1 2005 1 2006 1 1 2007 1 3 2 2 3 1 1 1 1 1 1 2008 3 3 3 1 1 1 2009 2 2 2 1 1 1 2010 ZP 1 3 2 3 2011 2 2 3 2 1 1 1 1 2012 3 3 3 3 1 1 1 1 1 2013 3 3 3 3 1 1 1 1 2014 3 3 3 3 5 1 1 1 1 1 Note. DS– Dolnośląskie, KP– Kujawsko-pomorskie, LB– Lubelskie, LU– Lubuskie, LD– Łódzkie, MP– Małopolskie, MZ–Mazowieckie, OP– Opolskie, PK– Podkarpackie, PD– Podlskie, PM– Pomorskie, SL– Śląskie, SK– Świętokrzyskie, WM– Warmińsko-mazurskie, WP– Wielkopolskie, ZP– Zachodniopomorskie. Table S2. Results from t–test for Dependent Samples – Concentrations During Episodes vs. Concentrations in the Periods without PM10 Episodes for Agglomerations (a), Cities (c) and Remaining Areas (ra). Marked Differences Are Significant at P < 0.05000
Variable area N t df P As a 12 5.000514 11 0.00042 Cd a 12 4.578443 11 0.000792 Pb a 12 3.396164 11 0.005969 Ni a 12 3.712514 11 0.003426 B(a)P a 12 2.571277 11 0.025991 As ra 16 3.900086 15 0.001421 Cd ra 16 7.197698 15 0.000003 Pb ra 16 5.567338 15 0.000054 Ni ra 16 1.882574 15 0.079302 B(a)P ra 16 3.471305 15 0.003419 As c 18 5.006867 17 0.000108 Cd c 18 4.242209 17 0.000549 Pb c 18 7.282129 17 0.000001 Ni c 18 2.533450 17 0.021427 B(a)P c 18 3.985114 17 0.000958 Table S3. Results from t-test for Dependent Samples -ILCR During Episodes vs. ILCR in the Periods without PM10 Episodes for Agglomerations (a), Cities (c) and Remaining Areas (ra). Marked Differences Are Significant at P < 0.05000
Variable area N t df P ILCR a 12 3.034650 11 0.011355 ILCR ra 16 1.233310 15 0.236438 ILCR c 18 5.626131 17 0.000030
doi: 10.3967/bes2018.003
Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland
-
Abstract:
Objective To check whether health risk impacts of exposure to airborne metals and Benzo(a) Pyrene during episodes of high PM10 concentrations lead to an increased number of lung cancer cases in Poland. Methods In this work, we gathered data from 2002 to 2014 concerning the ambient concentrations of PM10 and PM10-bound carcinogenic Benzo(a)pyrene[B(a)P] and As, Cd, Pb, and Ni. With the use of the criterion of the exceedance in the daily PM10 mass concentration on at least 50% of all the analyzed stations, the PM10 maxima's were selected. Lung cancer occurrences in periods with and without the episodes were further compared. Results During a 12-year period, 348 large-scale smog episodes occurred in Poland. A total of 307 of these episodes occurred in the winter season, which is characterized by increased emissions from residential heating. The occurrence of episodes significantly (P < 0.05) increased the concentrations of PM10-bound carcinogenic As, Cd, Pb, Ni, and B(a)P. During these events, a significant increase in the overall health risk from those PM10-related compounds was also observed. The highest probability of lung cancer occurrences was found in cities, and the smallest probability was found in the remaining areas outside the cities and agglomerations. Conclusion The link between PM pollution and cancer risk in Poland is a serious public health threat that needs further investigation. -
Key words:
- Poland /
- Episodes /
- Smog /
- PM10 /
- Metals /
- B (a) P /
- Lung cancer /
- Administrative distribution /
- Monitoring stations
-
Figure 3. Cumulative lifetime lung cancer risk (ILCR) resulting from exposure to PM-bound As, Cd, Pb, and Ni within Polish provinces but lying outside the agglomerations and cities (referred to as 'remaining areas' in this work) presented in two datasets, namely, including (ILCR With_Episodes) and excluding PM10 episodes (ILCR Without_Episodes). E-05, × 10-5; E-06, × 10-6.
Figure 4. Cumulative lifetime lung cancer risk (ILCR) resulting from exposure to PM-bound As, Cd, Pb, and Ni in Polish cities (with more than 100, 000 residents) presented in two datasets, namely, including (ILCR With_Episodes) and excluding PM10 episodes (ILCR Without_Episodes). E-05, × 10-5; E-06, × 10-6.
Table 1. Results of Testing the Probability Distribution of PM10 Daily (24 h) Concentrations;
Monitoring Period Total Number of Air Monitoring Stations* Number of Stations at Which the Daily PM10 Data Series Met the Criterion of Normal Distribution Number of Stations at Which the Daily PM10 Data Series Met the Criterion of Log-normal Distribution Number of Summer/Winter Spisodes Within Calendar Year Number of PM10 Episodes in Each Calendar Year 2002 17 0 9 6/7 13 2003 54 0 22 0/7 7 2004 121 0 44 0/1 1 2005 166 1 68 6/11 19 2006 163 0 59 1/23 24 2007 173 0 64 2/12 14 2008 164 0 56 2/10 12 2009 167 0 60 7/20 26 2010 150 0 35 0/43 43 2011 143 0 30 5/46 51 2012 151 0 14 2/51 53 2013 141 0 52 5/40 45 2014 158 0 53 4/36 40 Note. *All Polish air monitoring stations that provide the measurements of PM10 concentration by using automated or manual methods from http://powietrze.gios.gov.pl[ 21 ] (Supplementary materials available at www.besjournal.com).Table 2. Inhalation Unit Risks and Cancer Potency Factors for Risk Analysis[29]
Carcinogen Inhalation Unit Risk (µg/m3)−1 Inhalation Slope Factor (CSFi) (mg/kg×d)−1 Arsenic 3.3 × 10-3 1.2 × 101 Cadmium 4.2 × 10-3 1.5 × 101 Lead 1.2 × 10-5 4.2 × 10-2 Nickel (nickel oxide) 2.6 × 10-4 9.1 × 10-1 B(a)P 1.1 × 10-3 3.9 × 100 Table 3. Average concentrations (ng/m3) of As, Cd, Pb, Ni, and B(a)P in 12 Polish agglomerations in the 2002–2014 period. The significance (t-test, P < 0.05) and variance homogeneity (Levene's test) between mean concentrations in periods with episodes versus those without episodes are shown.
Constituents AGGLOMERATIONS Levene's test P-Value paired t-test Ds. Kp Lb Ld Mp Mz Pd Pm Sl-G Sl-RJ Wp Zp Mean Std.Dev F Sig As WITH_E 2.6 3.3 1.0 2.1 1.8 0.4 0.6 1.4 2.4 2.9 1.8 1.3 1.8 0.9 0.1237 0.7283 0.00042 As WITHOUT_E 2.4 2.9 0.9 1.9 1.7 0.3 0.6 1.3 2.1 2.6 1.7 1.0 1.6 0.8 Cd WITH_E 0.6 1.1 0.5 0.9 1.4 0.7 0.7 0.4 1.1 1.0 0.7 0.7 0.8 0.3 0.1151 0.7375 0.000792 Cd WITHOUT_E 0.6 1.0 0.4 0.8 1.3 0.7 0.7 0.4 1.0 0.9 0.6 0.6 0.7 0.3 Pb WITH_E 21.7 45.0 12.5 22.5 45.0 31.9 8.4 15.8 91.4 43.0 21.2 29.9 32.2 22.1 0.0141 0.9065 0.005969 Pb WITHOUT_E 19.9 38.0 12.1 20.0 44.0 31.0 7.7 14.8 90.4 40.0 19.7 29.3 30.7 22.3 Ni WITH_E 3.6 2.6 1.7 2.3 3.1 5.2 1.2 2.6 2.3 2.0 1.2 3.4 2.6 1.1 0.0002 0.9887 0.003426 Ni WITHOUT_E 3.6 2.6 1.7 2.2 3.0 5.1 1.2 2.7 2.3 1.9 1.2 3.3 2.5 1.1 BaP WITH_E 3.9 3.4 0.5 7.9 4.3 1.7 2.1 1.8 7.9 12.3 3.2 1.6 4.1 1.5 0.8578 0.3643 0.025991 BaP WITHOUT_E 3.0 3.4 0.5 6.8 2.6 1.4 1.9 1.4 6.2 8.5 3.2 1.6 3.5 2.5 Note. The significance (t-test, P < 0.05) and variance homogeneity (Levene’s test) between mean concentrations in periods with episodes versus those without episodes are shown. Ds-Wroctawska Kp-Bydgoska, Lb-Lubelska, Ld-todzka, Mp-Krakowska, Mz-Warszawska, Pd–Białostocka, Pm–Trójmiejska, Sl-G–Górnośląska, Sl-RJ–Rybnicko-Jastrzębska, Wp–Poznańska, Zp–Szczecińska. Table 4. Average concentrations (ng/m3) of As, Cd, Pb, Ni, and B(a)P in the 16 remaining (other than cities and agglomerations) areas of Poland in the 2002-2014 period.
Constituents REMAINING AREAS Levene's test P-Value paired t-test Ds. Kp Lb Lu Ld Mp Mz Op Pk Pd Pm Sl Sk Wm Wp Zp Mean Std Dev F Sig As WITH_E 3.8 1.9 0.4 3.4 2.0 1.5 0.6 2.3 1.4 0.3 1.4 3.0 - 1.1 2.3 0.8 1.7 1.1 0.1237 0.7283 0.001421 As WITHOUT_E 3.6 1.8 0.4 3.3 1.8 1.4 0.6 2.4 1.2 0.3 1.4 2.8 - 1.0 2.1 0.7 1.6 1.0 Cd WITH_E 1.0 1.0 0.7 0.6 0.6 1.1 0.6 0.5 1.1 - 0.4 1.4 1.3 0.2 0.8 0.5 0.8 0.3 0.1151 0.7375 0.000003 Cd WITHOUT_E 0.9 0.9 0.6 0.6 0.6 1.0 0.5 0.4 1.0 - 0.4 1.3 1.3 0.2 0.8 0.5 0.7 0.3 Pb WITH_E 40.0 20.7 8.3 24.3 21.0 31.6 20.7 20.6 27.3 13.0 18.4 58.7 - 5.4 20.7 17.4 23.1 13 0.0141 0.9065 0.000054 Pb WITHOUT_E 39.0 20.2 7.8 21.9 19.0 28.8 19.9 19.9 25.4 12.8 17.3 57.0 - 4.9 18.6 16.7 22.0 12.6 Ni WITH_E 3.8 1.6 2.0 2.8 2.1 3.7 2.4 2.4 1.4 0.5 4.1 5.0 3.8 0.7 3.1 3.4 2.6 1.1 0.0002 0.9887 0.079302 Ni WITHOUT_E 3.9 1.5 2.0 2.8 2.0 3.7 2.4 2.2 1.4 0.5 4.1 3.8 3.3 0.6 3.1 3.3 2.6 1.2 BaP WITH_E 4.8 3.2 2.6 4.5 9.8 7.7 3.6 4.6 5.5 1.8 5.1 7.9 5.2 0.6 2.5 3.4 4.1 2.3 0.8578 0.3643 0.003419 BaP WITHOUT_E 4.0 3.1 2.4 3.3 7.6 4.2 2.6 2.1 3.6 1.8 3.4 6.9 4.3 2.1 2.5 2.7 4.0 1.8 Note. The significance (t-test, P < 0.05) and variance homogeneity (Levene's test) between mean concentrations in periods with episodes versus those without episodes are shown. Ds.–Dolnośląska, Kp–Kujawsko-Pomorska, Lb–Lubelska, Lu–Lubuska, Ld-Łódzka, Mp–Krakowska, Mz-Mazowiecka, Op–Opolska, Pk–Podkarpacka, Pd–Podlska, Pm–Pomorska, Sl–Śląska, Sk–Świętokrzyska, Wm–Warmińsko-Mazurska, Wp–Wielkopolska, Zp–Zachodniopomorska. The lack of data "-". Table 5. Average (ng/m3) concentrations of As, Cd, Pb, Ni, and B(a)P in 18 Polish cities in the 2002-2014 period.
Constituents CITIES Levene's test P-Value paired t-test Ds. Leg Ds. Walbrz Kp Toru Kp Wlocl Lu Gorz Lu Ziel Mp Tar Mz Plock Mz Radom Op Opole Pk Rzesz Sl Biel Sl Czesto Sk Kiel Wm Elb Wm Olszty Wp Kalisz Zp Kosz Mean Std Dev F Sig As WITH_E 8.3 2.2 1.3 1.0 1.4 3.7 1.2 0.7 0.4 2.5 1.5 2.2 3.0 1.9 1.7 1.4 2.2 0.6 2.1 1.8 0.0064 0.9367 0.000108 As WITHOUT_E 8.0 2.2 1.2 0.9 1.4 3.7 1.1 0.7 0.3 2.4 1.3 2.0 2.7 1.6 1.7 1.3 2.0 0.5 1.9 1.7 Cd WITH_E 1.2 0.8 1.2 1.4 0.5 0.5 1.6 0.8 0.4 1.8 0.8 0.7 1.1 1.3 0.2 0.2 0.6 0.5 0.9 0.5 0.0568 0.8129 0.000549 Cd WITHOUT_E 1.1 0.7 1.2 1.4 0.5 0.4 1.6 0.8 0.4 1.8 0.7 0.6 1.0 1.1 0.2 0.2 0.5 0.4 0.8 0.5 Pb WITH_E 144.0 25.8 12.4 27.5 24.6 25.7 22.9 27.1 18.7 38.5 23.6 25.4 37.0 34.7 6.9 4.5 15.6 14.4 29.4 30.1 0.0009 0.9760 0.000001 Pb WITHOUT_E 142.0 24.1 11.6 25.7 24.0 24.8 21.8 26.6 16.1 35.8 19.7 22.2 35.0 32.2 6.0 4.0 13.4 13.4 27.7 30.0 Ni WITH_E 3.3 6.4 1.9 2.7 3.4 2.5 2.1 2.7 1.3 5.9 1.1 1.9 2.5 2.2 1.0 0.7 1.9 3.0 2.6 1.5 0.0176 0.8949 0.021427 Ni WITHOUT_E 2.7 6.4 1.8 2.7 3.3 2.4 2.1 2.7 1.3 5.6 1.1 1.9 2.5 2.1 1.0 0.7 1.8 3.0 2.5 1.5 BaP WITH_E 6.6 5.0 2.3 2.3 3.9 1.9 3.5 4.7 4.3 7.6 2.7 5.3 3.1 5.8 2.9 1.3 3.5 3.2 3.9 1.7 0.8595 0.3603 0.000958 BaP WITHOUT_E 5.2 4.7 1.9 2.3 2.1 1.6 3.5 4.1 3.8 6.4 2.7 3.1 2.9 4.7 2.9 1.1 3.5 2.4 3.3 1.4 Note. The significance (t-test, P < 0.05) and variance homogeneity (Levene's test) between mean concentrations in periods with episodes versus those without episodes are shown. DSLeg-Legnica, DsWalbrz-Wałbrzych, KpToru-Toruń, KpWlocl-Włocławek, LuGorz-Gorzów, LuZiel-Zielona Góra, MpTar-Tarnów, MzPlock-Płock, MzRadom-Radom, OpOpole-Opole, PkRzesz-Rzeszów, SlBiel-Bielsko-Biała, SlCzesto-Częstochowa, SkKiel-Kielce, WmElb-Elbląg, WmOlszty-Olsztyn, Wp-Kalisz-Kalisz, ZpKosz-Koszalin. S1. Summary Presenting the Number of Polish Air Monitoring Stations Conducting Measurements of As, Cd, Pb, Ni and B(a)P Concentrations by Type of the Station.
Year Vovoideship Urban background Rural Sub-urban Traffic Industrial As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P As Cd Pb Ni B(a)P 2002 DS 1 1 1 1 1 1 2003 1 3 3 3 1 1 1 1 1 2 1 1 2 1 1 2004 2 6 7 6 2 2 2 2 2 2 1 1 3 1 1 2005 3 10 14 11 3 2 2 2 2 2 1 1 1 1 1 4 1 1 2006 3 12 16 12 3 2 2 2 2 2 1 1 1 1 1 3 1 1 2007 5 14 18 14 5 1 1 1 1 1 1 1 1 1 1 1 3 1 1 2008 5 12 16 12 4 2 2 2 2 2 1 1 1 1 1 1 5 1 1 2009 6 14 14 10 5 1 1 1 1 1 1 5 1 2010 6 6 5 3 6 2 3 2 2 2 1 1 1 5 1 1 2011 6 9 6 6 1 2 1 2 2 1 1 1 1 1 1 4 1 1 2012 8 8 8 8 8 2 2 2 2 2 1 1 1 1 1 1 2013 9 9 9 9 6 2 2 2 2 1 1 1 1 2014 10 10 10 10 11 1 1 1 1 1 1 2002 KP 1 2003 1 2004 1 2 2005 1 1 1 1 2006 2 1 2 1 1 2 2007 1 1 1 1 1 1 1 1 1 1 1 2008 9 8 10 9 1 1 1 1 1 2009 1 1 3 2 1 1 1 1 1 2 2 2 2010 7 8 9 7 1 1 1 1 1 1 1 1 1 1 1 1 2011 3 3 3 2 2 2 2 2 1 2 2 2 2 1 1 2 1 2 2012 4 4 4 3 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2013 3 3 3 4 2 2 2 2 1 3 3 3 2 1 2 2 2 2 2014 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2002 LB 1 2003 1 1 2004 1 2 1 1 1 1 2005 1 1 1 1 1 1 1 2006 3 1 2007 2008 2009 3 5 4 1 2 2 2 2010 2 2 2 2 1 2011 1 1 1 1 2012 1 1 1 1 1 2013 2 2 2 2 1 2014 2 2 2 2 3 2 2002 LU 2003 2004 2005 2006 2007 2008 3 2009 1 2010 1 3 2 1 2011 3 3 3 1 2012 4 4 4 1 2013 5 5 5 1 2014 6 6 6 6 2002 LD 2003 2004 3 2005 3 3 2006 3 3 2007 3 3 2008 3 3 2009 4 5 1 2010 6 6 1 2011 5 6 2012 13 13 1 2013 11 11 1 2014 14 14 14 2002 MP 2003 2004 1 1 1 1 2005 2006 1 2007 2 2 1 2008 9 9 9 9 1 1 1 2009 11 10 10 11 1 2010 9 10 10 10 1 1 1 1 2011 5 6 5 5 1 1 1 1 2012 5 5 5 5 1 1 1 1 2013 4 4 4 4 1 1 1 1 2014 5 5 5 5 18 1 1 1 1 2002 MZ 1 2003 1 3 1 1 1 2004 3 3 3 3 1 1 1 1 2005 2 2 7 2 1 1 1 1 2006 2 2 4 2 5 1 1 1 1 2007 3 2 2 2 13 1 1 1 1 1 1 1 2008 9 8 11 8 1 1 1 1 1 2009 3 2 7 2 1 1 1 1 1 2010 2 2 2 1 1 1 1 1 1 2011 3 2 4 3 1 2012 4 4 4 3 1 2013 4 4 4 4 1 1 2014 4 4 4 4 8 2 1 1 1 2002 OP 2003 3 2004 4 2005 1 1 2006 1 1 2007 2008 3 3 3 1 2009 1 3 2 1 1 2010 3 3 3 2 1 2011 2 1 2012 2 2 2 2 1 2013 2 2 2 2 1 2014 3 3 3 3 2002 PD 2003 1 2004 1 2005 1 1 2006 1 1 2007 1 1 1 1 2008 2 1 1 2009 2 2 2 2010 1 1 1 2011 1 2012 2013 2014 2 2 2 2 2 2002 PK 1 2003 2004 2005 2006 2007 1 1 1 1 2008 1 2 2009 7 7 7 6 2 2010 8 8 8 6 2 2011 4 4 4 4 1 2012 4 4 4 4 1 2013 8 4 4 3 1 2014 4 4 4 4 9 2002 PM 1 2003 2004 2005 2006 2007 7 1 1 2008 8 8 8 1 1 1 2009 7 9 8 8 2 1 2010 8 12 10 10 6 1 1 2011 4 11 9 9 5 1 1 1 2012 4 12 12 12 6 1 1 1 1 1 2013 8 7 7 7 7 1 1 1 1 1 2014 4 10 11 11 10 2 2 2 2 1 1 2002 SL 2003 15 2004 13 2005 2006 2007 2008 2009 15 15 19 15 1 2010 11 11 11 11 1 2011 11 10 10 10 1 2012 11 10 10 10 1 2013 9 8 8 8 2014 10 9 9 9 14 2002 SK 2003 2004 2005 2006 1 2007 1 2008 2009 2 1 2 2010 1 1 1 1 1 2011 1 1 1 1 1 2012 1 1 1 1 1 2013 1 1 1 1 2014 1 1 1 1 3 1 2002 WM 2 2003 2004 2005 2006 2007 2 2 2 2 2008 2 2 2 1 2009 4 3 3 3 1 1 1 1 2010 3 4 3 3 1 1 1 1 1 2011 3 3 3 3 1 1 1 1 1 1 2012 3 2 2 2 1 1 2 1 1 2013 4 3 3 3 1 1 1 2014 3 3 3 3 3 1 1 1 1 1 2002 WP 3 2003 2004 2005 3 3 3 2006 2 4 4 2 2007 1 5 6 6 1 2008 8 8 8 1 2009 3 7 3 7 1 2010 5 5 4 4 1 2011 3 3 4 3 1 2012 4 4 6 4 1 1 2013 5 5 5 5 1 2014 5 4 5 5 6 1 2002 ZP 1 2003 1 2004 1 2005 1 2006 1 1 2007 1 3 2 2 3 1 1 1 1 1 1 2008 3 3 3 1 1 1 2009 2 2 2 1 1 1 2010 ZP 1 3 2 3 2011 2 2 3 2 1 1 1 1 2012 3 3 3 3 1 1 1 1 1 2013 3 3 3 3 1 1 1 1 2014 3 3 3 3 5 1 1 1 1 1 Note. DS– Dolnośląskie, KP– Kujawsko-pomorskie, LB– Lubelskie, LU– Lubuskie, LD– Łódzkie, MP– Małopolskie, MZ–Mazowieckie, OP– Opolskie, PK– Podkarpackie, PD– Podlskie, PM– Pomorskie, SL– Śląskie, SK– Świętokrzyskie, WM– Warmińsko-mazurskie, WP– Wielkopolskie, ZP– Zachodniopomorskie. S2. Results from t–test for Dependent Samples – Concentrations During Episodes vs. Concentrations in the Periods without PM10 Episodes for Agglomerations (a), Cities (c) and Remaining Areas (ra). Marked Differences Are Significant at P < 0.05000
Variable area N t df P As a 12 5.000514 11 0.00042 Cd a 12 4.578443 11 0.000792 Pb a 12 3.396164 11 0.005969 Ni a 12 3.712514 11 0.003426 B(a)P a 12 2.571277 11 0.025991 As ra 16 3.900086 15 0.001421 Cd ra 16 7.197698 15 0.000003 Pb ra 16 5.567338 15 0.000054 Ni ra 16 1.882574 15 0.079302 B(a)P ra 16 3.471305 15 0.003419 As c 18 5.006867 17 0.000108 Cd c 18 4.242209 17 0.000549 Pb c 18 7.282129 17 0.000001 Ni c 18 2.533450 17 0.021427 B(a)P c 18 3.985114 17 0.000958 S3. Results from t-test for Dependent Samples -ILCR During Episodes vs. ILCR in the Periods without PM10 Episodes for Agglomerations (a), Cities (c) and Remaining Areas (ra). Marked Differences Are Significant at P < 0.05000
Variable area N t df P ILCR a 12 3.034650 11 0.011355 ILCR ra 16 1.233310 15 0.236438 ILCR c 18 5.626131 17 0.000030 -
[1] Ośródka L, Ośródka K, Święch-Skiba J. Smog zimowy w Górnośląskim Okręgu Przemysłowym jako jeden ze skutków antropogenicznych zmian klimatu lokalnego. Folia Geographica Physica, 1998; 3, 361-9. http://dspace.uni.lodz.pl:8080/xmlui/bitstream/handle/11089/3057/36-o%C5%9Br%C3%B3dka.pdf?sequence=1 [2] Pastuszka JS, Rogula-Kozłowska W, Zajusz-Zubek E. Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environ Monit Assess, 2010; 168, 613-27. doi: 10.1007/s10661-009-1138-8 [3] Mira-Salama D, Grüning C, Jensen NR, et al. Source attribution of urban smog episodes caused by coal combustion. Atmos Res, 2008; 88, 294-304. doi: 10.1016/j.atmosres.2007.11.025 [4] Euracoal statistics, 2016. Coal and lignite production and imports in Europe. European Association for Coal and Lignite aisbl. https://euracoal.eu/info/euracoal-eu-statistics/. [2017-04-01] [5] Ośródka L, Krajny E, Wojtylak M. Analiza epizodów smogowych w sezonie zimowym na Górnym Śląsku. In: Ochrona powietrza w teorii i praktyce (Konieczyński J. Ed), pp. 197-206. Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk, Zabrze, 2006. [6] Majewski G, Rogula-Kozłowska W, Czechowski PO, et al. The impact of selected parameters on visibility:first results from a long-term campaign in Warsaw, Poland. Atmosphere, 2015; 6, 1154-74. doi: 10.3390/atmos6081154 [7] Sati AP, Mohan M. Analysis of air pollution during a severe smog episode of November 2012 and the Diwali Festival over Delhi, India. Inter J of Rem Sens, 2014; 35, 6940-54. doi: 10.1080/01431161.2014.960618 [8] Wichmann HE. What can we learn today from the Central European smog episode of 1985 (and earlier episodes)? Int J Hyg Environ Health, 2004; 207, 505-20. doi: 10.1078/1438-4639-00322 [9] Bell ML, Davis DL, Fletcher T. A retrospective assessment of mortality from the London smog episode of 1952:the role of influenza and pollution. Environ Health Persp, 2004; 112, 6-8. doi: 10.1007/978-0-387-73412-5_15.pdf [10] Vieno M, Heal MR, Twigg MM, et al. The UK particulate matter air pollution episode of March-April 2014:more than Saharan dust. Environ Res Lett, 2016; 11, 059501. doi: 10.1088/1748-9326/11/5/059501 [11] Kowalska M, Hubicki L, Zejda JE, et al. Effect of ambient air pollution on daily mortality in Katowice conurbation, Poland. Pol J Environ Stud, 2007; 16, 227-32. http://www.pjoes.com/pdf/16.2/227-232.pdf [12] Samek L. Overall human mortality and morbidity due to exposure to air pollution. IJOMEH, 2016; 29, 417-26. doi: 10.13075/ijomeh.1896.00560 [13] Valentin Foltescu/EEA. Air quality in Europe Report-2014 (EEA Report. No 5/2014). European Environment Agency. 2014. doi: 10.1088/1748-9326/aa5987/meta [14] Badyda AJ, Grellier J, Dąbrowiecki P. Ambient PM2.5 exposure and mortality due to lung cancer and cardiopulmonary diseases in Polish cities. Adv Exp Med Biol, 2017; 944, 9-17. https://www.sciencedirect.com/science/article/pii/S026974911730163X [15] Krzyżanowski M. Wpływ zanieczyszczenia powietrza pyłami na układ krążenia i oddychania (Circulatory and respiratory effects of particulate air pollution). Lekarz Wojskowy (Military Physician), 2016; 1, 17-22. http://gdansk.stat.gov.pl/download/gfx/gdansk/en/defaultaktualnosci/822/1/24/1/rocznik_pom_2017.pdf [16] Godłowska J, Tomaszewska AM. Relations between circulation and winter air pollution in Polish urban areas. Arch Environ Prot, 2010; 36, 55-66. https://www.researchgate.net/publication/265592100_RELATIONS_BETWEEN_CONCENTRATIONS_OF_AIR_POLLUTION_IN_CRACOW_AND_CONDITIONS_IN_THE_URBAN_BOUNDARY_LAYER_QUALIFIED_ON_THE_BASIS_OF_SODAR_DATA [17] Juda-Rezler K, Reizer M, Oudinet JP. Determination and analysis of PM10 source apportionment during episodes of air pollution in Central Eastern European urban areas:The case of wintertime 2006. Atmos Environ, 2011; 45, 6557-66. doi: 10.1016/j.atmosenv.2011.08.020 [18] IOŚ-PIB, 2016. Analiza wybranych epizodów wysokich stężeń pyłu PM10 z lat 2013-2016. Etap I, Epizody z lat 2013-2014, Warszawa. [19] Katzman TL, Rutter AP, Schauer JJ, et al. PM2.5 and PM10-PM2.5 compositions during wintertime episodes of elevated PM concentrations across the Midwestern USA. Aero Air Qual Res, 2010; 10, 140-53. https://www.researchgate.net/publication/240488169_PM_25_chemical_composition_and_spatiotemporal_variability_during_the_California_Regional_PM_10_PM_25_Air_Quality_Study_CRPAQS [20] Aarnio P, Martikainen J, Hussein T, et al. Analysis and evaluation of selected PM10 pollution episodes in the Helsinki Metropolitan Area in 2002. Atmos Environ, 2008; 42, 3992-4005. doi: 10.1016/j.atmosenv.2007.02.008 [21] GIOŚ (Chief Inspectorate of Environmental Protection). The portal on air quality. http://powietrze.gios.gov.pl. [2017-09-4]. (In Polish) [22] EEA Agency. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0107. [2017-10-11] [23] World Health Organization. Regional Office for Europe. Second Edition. WHO Regional Publications, European Series, No. 91. 2000. [24] World Health Organization. Regional Office for Europe. Air Quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update (2005)-revised WHO recommendations from 2000 regarding PM10, PM2, 5, NO2, SO2, Ozone. European Series, No. 91, 2005. [25] EnHealth Council. Environmental health risk assessment: guidelines for assessing human health risks from environmental hazards. Canberra, ACT: Dept. of Health and Ageing and EnHealth, 2002. [26] US EPA. (U. S. Environmental Protection Agency). Risk Assessment Guidance for Superfund: Volume Ⅰ Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) ('Part F'). Office of Superfund Remediation and Technology Innovation. Washington, DC, 2009. [27] US EPA. (U. S. Environmental Protection Agency). Exposure Factors Handbook: 2011 Edition. Report EPA/600/R-090/052F, Washington, DC, 2011. [28] Liu X, Song Q, Tang Y, et al. Human health risk assessment of heavy metals in soil-vegetable system:a multi-medium analysis. Sci Tot Environ, 2013; 463-464, 530-40. doi: 10.1007/s10653-016-9830-4 [29] OEHHA. Chemicals database. https://oehha.ca.gov/chemicals. [2017-09-4] [30] Widziewicz K, Loska K. Metal induced inhalation exposure in urban population:A probabilistic approach. Atmos Environ, 2016; 128, 198-207. doi: 10.1016/j.atmosenv.2015.12.061 [31] Chen SC, Liao CM. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution. Sci Tot Environ, 2006; 366, 112-23. doi: 10.1016/j.scitotenv.2005.08.047 [32] RAGS. Risk Assessment Guidance for Superfund Volume Ⅰ Human Health Evaluation Manual (Part A), EPA/540/1-89/002, Washington, D. C. Office of Emergency and Remedial Response US Environmental Protection Agency, 1989. [33] Kiesewetter G, Schoepp W, Heyes C, et al. Modelling PM2.5 impact indicators in Europe:Health effects and legal compliance. Environ Modell Soft, 2015; 74, 201-11. doi: 10.1016/j.envsoft.2015.02.022 [34] Rogula-Kozłowska W, Kozielska B, Klejnowski K. Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in southern Poland. Bull Environ Contamin Toxicol, 2013; 91, 349-55. doi: 10.1007/s00128-013-1060-1 [35] Rogula-Kozłowska W, Klejnowski K, Rogula-Kopiec P, et al. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual Atmos Health, 2014; 7, 41-58. doi: 10.1007/s11869-013-0222-y [36] Rogula-Kozłowska W, Majewski G, Czechowski PO. The size distribution and origin of elements bound to ambient particles:a case study of a Polish urban area. Environ Monit Assess, 2015; 187, 240. doi: 10.1007/s10661-015-4450-5 [37] Rogula-Kozłowska W, Majewski G, Błaszczak B, et al. Origin-oriented elemental profile of fine ambient particulate matter in Central European suburban conditions. Int J Environ Res Public Health, 2016; 13, 715. doi: 10.3390/ijerph13070715 [38] EEA. EMEP/CORINAIR Emission Inventory Guidebook. 3rd ed. European Environment Agency. Update, 2002. http://www.inemar.eu/xwiki/bin/view/InemarDatiWeb/Classification+of+activities+%28SNAP+97%29. [2017-09-4] [39] IOŚ-PIB, 2016. Assessment of air pollution at the regional background monitoring stations in Poland in 2015 in terms of PM10 and PM2. 5 dust composition and the deposition of heavy metals and PAHs. Institute of Environmental Protection-National Research Institute (Ocena zanieczyszczenia powietrza na stacjach monitoringu tła regionalnego w Polsce w roku 2015 w zakresie składu pyłu PM10 i PM2. 5 oraz depozycji metali ciężkich i WWA), Instytut Ochrony Środowiska-Państwowy Instytut Badawczy, IOŚ-PIB) Warszawa. http://powietrze.gios.gov.pl/pjp/maps/measuringstation/U. [2017-09-4] [40] GUS, 2016. Central Statistical Office. Environment. Statistical Information and Elaboration. http://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5484/1/17/1/ochrona_srodowiska_2016.pdf. [2017-09-4] [41] Rogula-Kozłowska W. Size-segregated urban particulate matter:mass closure, chemical composition, and primary and secondary matter content. Air Qual Atmos Health, 2016; 9, 533-50. doi: 10.1007/s11869-015-0359-y [42] Widziewicz K, Rogula-Kozłowska W, Majewski G. Lung cancer risk associated with exposure to benzo(a)pyrene in Polish agglomerations, cities and other areas. Int J Environ Res, 2018 (In press). [43] Rogula-Kozłowska W. Traffic-generated changes in the chemical characteristics of size-segregated urban aerosols. Bull Environ Contamin Toxicol, 2014; 93, 493-502. doi: 10.1007/s00128-014-1364-9 [44] Rey M, Astorga C, Cancelinha J, et al. High concentrations of PM10 and PAHs during winter smog episodes in Krakow, Poland. European Communities, The 34th International Symposium of Environmental Analytical Chemistry Conference paper. https://www.researchgate.net/publication/236962220_High_Concentrations_of_PM10_and_PAHs_During_Winter_Smog_Episodes_in_Krakow_Poland. [2017-09-4] [45] Kozielska B, Rogula-Kozłowska W. Polycyclic aromatic hydrocarbons in particulate matter in the cities of Upper Silesia. Arch Waste Manage Environ Protect, 2014; 16, 75-84. doi: 10.1080/10406638.2017.1328448 [46] Rogula-Kozlowska W, Majewski G, Czechowski PO, et al. Analysis of the data set from a two-year observation of the ambient water-soluble ions bound to four particulate matter fractions in an urban background site in southern Poland. Environ Prot Eng, 2017; 43, 137-49. doi: 10.1007/s10874-012-9223-8 [47] Zhou M, He G, Fan M, et al. Smog episodes, fine particulate pollution and mortality in China. Environ Res, 2015; 136, 396-404. doi: 10.1016/j.envres.2014.09.038 [48] Belleudi V, Faustini A, Stafoggia M, et al. Impact of fine and ultrafine particles on emergency hospital admissions for cardiac and respiratory disease. Epidemiol, 2010; 21, 414-23. doi: 10.1097/EDE.0b013e3181d5c021 [49] Cheng MH, Chen CC, Chiu HF, et al. Fine particulate air pollution and hospital admissions for asthma:a case-crossover study in Taipei. J Toxicol Environ Health, 2014; 77, 1075-83. doi: 10.1080/15287394.2014.922387 [50] Tsai SS, Chang CC, Yang CY. Fine particulate air pollution and hospital admissions for chronic obstructive pulmonary disease:a case-crossover study in Taipei. Int J Environ Res Pub Health, 2013; 10, 6015-26. doi: 10.3390/ijerph10116015 [51] Tsai SS, Chiu HF, Liou SH, et al. Short-term effects of fine particulate air pollution on hospital admissions for respiratory diseases:a case-crossover study in a tropical city. J Toxicol Environ Health, 2014; 77, 1091-101. doi: 10.1080/15287394.2014.922388 [52] Wang L, Yu C, Liu Y, et al. Lung Cancer Mortality Trends in China from 1988 to 2013:New Challenges and Opportunities for the Government. Int J Environ Res Public Health, 2016; 13, 1052. doi: 10.3390/ijerph13111052 [53] WHO cancer today database. http://gco.iarc.fr/today/home. [2017-09-4]