-
The antibiotic susceptibility profiles and MIC ranges of 310 NTM clinical isolates are shown in Tables 1 and 2, respectively. The antibiotic resistance of the four macrolides was in the order ERY, AZM, ROX, and CLAR (high to low) and showed obvious species specificity. M. fortuitum and M. gordonae were the two species with the most distinct difference. M. fortuitum isolates were almost 100.0% resistant to all four macrolides, with 32 μg/mL MIC50 and ≥ 128 μg/mL MIC90. Hence, the use of macrolides may be excluded for the treatment of infections caused by M. fortuitum. On the contrary, M. gordonae strains were essentially sensitive to macrolides with ≤ 4 μg/mL MIC90. The clinical isolation rate of M. massiliense was much lower than that of M. abscessus, and only four isolates were included in this study. Except for the two ERY-resistant isolates, all M. massiliense were sensitive to the four macrolides, which showed high antibacterial efficiencies. The resistance observed was similar for other three species, M. abscessus subsp. abscessus, M. avium, and M. intracellulare. Except for ERY, AZM, ROX, and CLAR showed a resistance rate lower than 24% and MIC50 lower than 8 μg/mL.
Table 1. Resistance (%) of 310 NTM Clinical Isolates from China to Four Macrolides
Species Number of Strains ERY (n/%) AZM (n/%) ROX (n/%) CLAR (n/%) RGM M. abscessus subsp. abscessus 52 14/26.9 12/23.1 12/23.1 7/13.5 M. abscessus subsp. massiliense 4 2/50.0 0/0 0/0 0/0 M. fortuitum 9 9/100.0 9/100.0 9/100.0 7/77.8 SGM M. avium 63 43/63.5 14/22.2 8/12.7 6/9.5 M. intracellulare 159 58/35.2 17/10.7 10/6.3 5/3.1 M. gordonae 23 2/8.7 2/8.7 1/4.3 0/0 Note. n, number of resistant strains. Table 2. Macrolide MIC Range (μg/mL) of NTM
NTM Species ERY AZM ROX CLAR MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 RGM M. abscessus subsp. abscessus 0.030-> 256.000 0.250 64.000 0.030-> 256.000 0.500 64.000 0.030-> 256.000 0.250 64.000 0.030-64.000 0.125 32.000 M. abscessus subsp. massiliense 2.000-8.000 4.000 8.000 2.000-4.000 2.000 4.000 2.000-4.000 4.000 4.000 0.125-0.500 0.250 0.500 M. fortuitum 32.000-> 256.000 64.000 > 256.000 16.000-> 256.000 32.000 > 256.000 16.000-128.000 32.000 128.000 1.000-32.000 8.000 32.000 SGM M. avium 0.250-256.000 32.000 256.000 0.060-64.000 8.000 32.000 0.060-64.000 4.000 32.000 ≤0.030-32.000 0.500 16.000 M. intracellulare 0.125-> 256.000 16.000 128.000 0.125-> 256.000 8.000 32.000 0.125-> 256.000 2.000 8.000 0.030-128.000 0.250 1.000 M. gordonae 0.030-256.000 0.250 4.000 0.125-64.000 1.000 4.000 0.125-256.000 0.125 4.000 0.030-8.000 0.030 0.500 Note. MIC50/90, MICs that inhibit 50% and 90% of the isolates, respectively. -
To explore the role of target-site mutation in the development of macrolide resistance in NTM, the 23S rRNA coding gene, rrl, was sequenced and aligned for 143 strains with different MIC levels selected from 310 NTM clinic isolates that were tested for macrolide resistance.
Only one M. intracellulare strain harbored A2058T mutation and three M. abscessus subsp. abscessus harbored A2059G mutations. These four strains were highly resistant to all four macrolides and exhibited an MIC value as follows: ERY> 256 μg/mL, AZM> 256 μg/mL, ROX> 256 μg/mL, and CLAR ≥ 64 μg/mL.
Aside from 2, 058/2, 059 sites, a total of 193 point mutations different from those in the E. coli reference sequence were detected in 143 NTM isolates, wherein 134 sites were common in all NTM isolates tested (Table 3). The other 35 sites existed only in a few of the six NTM species (Table 4). These showed species specificity but were unrelated to macrolide MICs. M. abscessus subsp. abscessus and M. abscessus subsp. massiliense belonged to the same fast-growing M. abscessus species. Their sequences were identical at all sites mentioned above. Although these two subspecies could not be distinguished from each other with rrl gene, the two sites G2191A and T2221C allowed differentiation between these species and other four species. The genetic variation in M. avium and M. intracellulare that belonged to the same M. avium complex (MAC) was also very similar. Seven sites, including, G2140A, G2210C, C2217G, T2238C, T2322C, T2404C, and A2406G, were specially carried by these two species, while G2321A was only observed in M. intracellulare. Three sites, A2192G, T2358G, and A2636G, were distinct for M. fortuitum, while G2152A was specific for M. gordonae. The remaining 24 sites were harbored in one or two NTM isolates and these were mutations without any statistical significance. Although we failed to identify any macrolide resistance-related 23S rRNA mutations in this study, these genus- and species-specific sites on rrl gene mentioned above may facilitate strain identification up to the species level.
Table 3. Common Point Mutations of NTM that Are Different from E. coli Reference Sequence
Serial Number Position Mutant Number of Strains Serial Number Position Mutant Number of Strains 1 2019 A→C 107 23 2102 G→T 107 2 2023 C→A 107 24 2103 C→A 90 3 2024 G→C 107 C→T 17 4 2025 C→G 107 25 2105 T→G 107 5 2026 T→A 107 26 2106 T→G 107 6 2029 G→A 107 27 2107 G→T 107 7 2037 A→T 107 28 2108 A→T 107 8 2038 G→C 107 29 2128 G→A 107 9 2039 T→G 107 30 2138 G→A 103 10 2040 G→T 107 G→C 1 11 2044 C→G 107 G→T 3 12 2052 A→G 107 31 2139 T→C 80 13 2057 G→A 107 T→G 23 14 2070 A→G 107 T→- 4 15 2076 T→C 107 32 2153 C→T 103 16 2088 A→G 107 C→G 4 17 2089 C→T 107 33 2160 C→T 107 18 2091 C→T 107 34 2163 A→T 107 19 2094 A→G 106 35 2165 C→G 107 A→T 1 36 2178 C→T 107 20 2095 A→T 90 37 2181 T→G 107 A→C 17 38 2182 -→A 107 21 2096 C→G 107 39 2184 A→C 107 22 2097 A→T 101 40 2185 A→G 107 A→C 6 41 2187 G→A 107 42 2190 T→G 107 87 2387 C→A 107 43 2193 T→C 107 88 2388 A→C 103 44 2195 T→A 81 A→T 4 T→C 23 89 2400 T→C 107 T→- 3 90 2401 G→A 107 45 2204 T→C 107 91 2402 G→C 107 46 2207 C→A 107 92 2403 T→C 107 47 2213 A→T 107 93 2409 A→G 107 48 2220 G→T 107 94 2418 C→G 107 49 2222 T→C 107 95 2419 C→T 107 50 2223 G→A 107 96 2420 A→G 107 51 2233 T→C 107 97 2443 T→C 107 52 2248 G→A 107 98 2463 A→C 107 53 2260 C→T 107 99 2464 C→T 107 54 2261 T→G 107 100 2465 C→T 107 55 2271 G→A 107 101 2466 G→C 107 56 2272 A→T 107 102 2476 T→C 107 57 2283 A→C 107 103 2488 C→G 107 58 2286 A→C 107 104 2489 G→A 107 59 2288 G→A 107 105 2490 G→T 107 60 2295 G→C 107 106 2491 T→G 107 61 2296 G→C 107 107 2515 A→G 107 62 2299 A→C 107 108 2518 A→G 107 63 2301 T→A 107 109 2532 A→G 107 64 2307 T→A 107 110 2535 T→C 107 65 2311 A→C 107 111 2549 A→T 107 66 2312 C→A 107 112 2550 T→G 107 67 2319 A→T 107 113 2562 A→C 107 68 2323 T→G 107 114 2563 T→A 107 69 2331 T→G 103 115 2570 T→C 107 T→A 4 116 2573 T→C 107 70 2332 G→T 107 117 2613 C→T 107 71 2336 T→C 107 118 2619 T→C 107 72 2340 C→G 107 119 2624 T→C 107 73 2341 C→G 107 120 2626 G→C 107 74 2356 C→A 107 121 2630 C→T 107 75 2357 G→C 107 122 2631 T→C 107 76 2359 G→T 107 123 2632 G→A 107 77 2362 G→A 107 124 2635 G→A 107 78 2363 G→A 101 125 2637 A→C 107 G→T 6 126 2638 C→T 107 79 2364 C→G 107 127 2644 G→A 107 80 2365 G→T 107 128 2645 G→A 107 81 2367 G→A 100 129 2646 G→A 107 G→- 7 130 2647 G→C 101 82 2374 T→G 107 G→T 6 83 2375 G→A 107 131 2651 C→T 107 84 2382 C→T 107 132 2652 T→C 107 85 2383 A→C 107 133 2672 A→G 107 86 2386 T→G 107 134 2673 G→A 107 Table 4. Species-specific Point Mutations in rrl Gene from 143 NTM Strains
Serial Number Positions E. coli Mutant M. abscessus (n = 46) M. massiliense (n = 4) M. fortuitum (n = 9) M. avium (n = 49) M. intracellulare (n = 31) M. gordonae (n = 4) 1 2081 T T→C - - 9 49 31 - 2 2083 G G→A - - 9 49 31 - 3 2099 T T→C - - 9 49 31 4 4 2101 A A→G 46 4 - 49 31 4 5 2131 T T→G 45 4 9 - 31 4 T→A 1 - - - - - 6 2136 G G→A - - - - 31 1 7 2137 T T→C 46 4 9 49 - 4 8 2140 G G→C - - 9 - - 4 G→A - - - 49 31 - 9 2141 G G→C 46 4 9 - - - 10 2150 C C→G 46 4 9 - - - C→T - - - 49 31 4 11 2151 T T→G - - 9 - - 4 12 2152 G G→A - - - - - 4 G→T 46 4 9 - - - 13 2154 A A→G 46 4 9 49 - 4 14 2162 G G→A 46 4 - - - - 15 2164 C C→T - - 9 49 31 4 16 2191 G G→A 46 4 - - - - 17 2192 A A→G - - 9 - - - 18 2196 T T→C - - - 49 31 4 19 2202 G G→C 46 4 9 - - - 20 2206 A A→G 46 4 9 - - - 21 2210 G G→C - - - 49 31 - 22 2212 - -→A 46 4 9 - - 4 23 2215 T T→C - - - - 8 - 24 2217 C C→G - - - 49 31 - 25 2221 T T→C 46 4 - - - - 26 2224 C C→G 46 4 9 - - - 27 2238 T T→C - - - 49 31 - 28 2267 T T→C 46 4 9 - - - 29 2321 G G→A - - - - 31 - G→T 46 4 9 - - 4 30 2322 T T→C - - - 49 31 - 31 2328 C C→T - - 9 49 31 4 32 2358 T T→C 41 4 - - - 1 T→G - - 9 - - - 33 2404 T T→C - - - 49 31 - 34 2406 T T→C - - - 49 31 - 35 2636 A A→G - - 9 - - - -
While detecting 23S rRNA mutations, the presence of five types of erm genes, erm(37) to erm(41), related to mycobacteria were screened in these 143 NTM isolates. PCR amplicons of expected size (-750 bp) with erm(39) primer sets were observed in all M. fortuitum. Amplicons of the expected size (-650 bp) with erm(41) primer sets were obtained in all 46 M. abscessus subsp. abscessus isolates, while those of smaller size (-300 bp) were detected in four M. abscessus subsp. massiliense isolates. Sequencing result showed that erm(41) of M. massiliense had two deletions (nucleotides 64 and 65; 276 bp after nucleotide 158) as compared with M. abscessus and, thus, lacked most of the functional domains of ribosomal RNA adenine dimethylases. No erm gene was detected in either of the three SGM species, M. avium, M. intracellulare, or M. gordonae.
As T/C polymorphism at 28th nucleotide on erm(41) correlated with inducible macrolide resistance[19, 20], we further compared the 3-day and 14-day antibiotic susceptibility of strains that carried erm(41) genes. Three M. abscessus subsp. abscessus strains harboring A2059G substitution were excluded, as their 3-day MICs had already reached the highest concentration. As shown in Table 5, 34 of 43 M. abscessus subsp. abscessus isolates harbored thymine at 28th nucleotide position (T28 sequevar) corresponding to Trp10 in the amino acid sequence. The other nine isolates were C28 sequevar (cytosine, Arg10). MICs of all T28 sequevar isolates reached the highest detection macrolide concentration at 14 days, irrespective of these strains being sensitive or resistant to macrolide at 3 days. In contrast, MICs of the nine C28 sequevar isolates were essentially the same at 3 and 14 days. Thus, erm gene was responsible for inducible macrolide resistance of M. abscessus subsp. abscessus; the resistance observed at 3 days was out of the interpretable range for 23S rRNA and erm gene. Although all four M. massiliense isolates were T28 sequevars, these were sensitive to macrolides and had no change in MICs upon prolongation of the antibiotic susceptibility test to 14 days owing to the deletion and loss of function of erm(41).
Table 5. Number of Resistant Strains and MIC Range at 3 and 14 Days for Two Types of erm(41) Sequevar Strains of M. abscessus subsp. abscessus and M. abscessus subsp. massiliense Absenting rrl Mutation (A2059G)
M. abscessus Subspecies Sequevar Antibiotic Number of Resistant Strains (n) MIC Range (μg/mL) & NBSP; Day 3 Day 14 Day 3 Day 14 M. abscessus subsp. abscessus T28 ERY 25 34 0.3-128.0 > 256.0 (n = 34) AZM 10 34 0.3-128.0 > 256.0 ROX 7 34 0.3-64.0 64.0-> 256.0 CLAR 3 34 0.3-16.0 8.0-> 128.0 C28 ERY 4 4 0.3-32.0 2.0-32.0 (n = 9) AZM 1 1 0.3-16.0 1.0-16.0 ROX 1 1 0.3-16.0 1.0-16.0 CLAR 0 0 0.3-4.0 1.0-4.0 M. abscessus subsp. massiliense T28 ERY 2 2 < 1.0-16.0 1.0-16.0 (n = 4) AZM 0 0 < 1.0 1.0 ROX 0 0 < 1.0 1.0 CLAR 0 0 < 1.0 1.0
doi: 10.3967/bes2018.037
Preliminary Study on Drug Susceptibility Profile and Resistance Mechanisms to Macrolides of Clinical Isolates of Non-tuberculous Mycobacteria from China
-
Abstract:
Objective Macrolide susceptibility and drug resistance mechanisms of clinical non-tuberculous mycobacteria (NTM) isolates were preliminarily investigated for more accurate diagnosis and treatment of the infection in China. Methods Four macrolides, including clarithromycin (CLAR), azithromycin (AZM), roxithromycin (ROX), and erythromycin (ERY), were used to test the drug susceptibility of 310 clinical NTM isolates from six provinces of China with the broth microdilution method. Two resistance mechanisms, 23S rRNA and erm, were analyzed with nucleotide sequence analysis. Results Varied effectiveness of macrolides and species-specific resistance patterns were observed. Most Mycobacterium abscessus subsp. massiliense were susceptible and all M. fortuitum were highly resistant to macrolides. All the drugs, except for erythromycin, exhibited excellent activities against slow-growing mycobacteria, and drug resistance rates were below 22.2%. Only four highly resistant strains harbored 2, 058/2, 059 substitutions on rrl and none of other mutations were related to macrolide resistance. G2191A and T2221C on rrl were specific for the M. abscessus complex (MABC). Seven sites, G2140A, G2210C, C2217G, T2238C, T2322C, T2404C, and A2406G, were specifically carried by M. avium and M. intracellulare. Three sites, A2192G, T2358G, and A2636G, were observed only in M. fortuitum and one site G2152A was specific for M. gordonae. The genes erm(39) and erm(41) were detected in M. fortuitum and M. abscessus and inducible resistance was observed in relevant sequevar. Conclusion The susceptibility profile of macrolides against NTM was demonstrated. The well-known macrolide resistance mechanisms, 23S rRNA and erm, failed to account for all resistant NTM isolates, and further studies are warranted to investigate macrolide resistance mechanisms in various NTM species. -
Key words:
- Non-tuberculous mycobacteria /
- Macrolide /
- Drug resistance
-
Table 1. Resistance (%) of 310 NTM Clinical Isolates from China to Four Macrolides
Species Number of Strains ERY (n/%) AZM (n/%) ROX (n/%) CLAR (n/%) RGM M. abscessus subsp. abscessus 52 14/26.9 12/23.1 12/23.1 7/13.5 M. abscessus subsp. massiliense 4 2/50.0 0/0 0/0 0/0 M. fortuitum 9 9/100.0 9/100.0 9/100.0 7/77.8 SGM M. avium 63 43/63.5 14/22.2 8/12.7 6/9.5 M. intracellulare 159 58/35.2 17/10.7 10/6.3 5/3.1 M. gordonae 23 2/8.7 2/8.7 1/4.3 0/0 Note. n, number of resistant strains. Table 2. Macrolide MIC Range (μg/mL) of NTM
NTM Species ERY AZM ROX CLAR MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 MIC Range MIC50 MIC90 RGM M. abscessus subsp. abscessus 0.030-> 256.000 0.250 64.000 0.030-> 256.000 0.500 64.000 0.030-> 256.000 0.250 64.000 0.030-64.000 0.125 32.000 M. abscessus subsp. massiliense 2.000-8.000 4.000 8.000 2.000-4.000 2.000 4.000 2.000-4.000 4.000 4.000 0.125-0.500 0.250 0.500 M. fortuitum 32.000-> 256.000 64.000 > 256.000 16.000-> 256.000 32.000 > 256.000 16.000-128.000 32.000 128.000 1.000-32.000 8.000 32.000 SGM M. avium 0.250-256.000 32.000 256.000 0.060-64.000 8.000 32.000 0.060-64.000 4.000 32.000 ≤0.030-32.000 0.500 16.000 M. intracellulare 0.125-> 256.000 16.000 128.000 0.125-> 256.000 8.000 32.000 0.125-> 256.000 2.000 8.000 0.030-128.000 0.250 1.000 M. gordonae 0.030-256.000 0.250 4.000 0.125-64.000 1.000 4.000 0.125-256.000 0.125 4.000 0.030-8.000 0.030 0.500 Note. MIC50/90, MICs that inhibit 50% and 90% of the isolates, respectively. Table 3. Common Point Mutations of NTM that Are Different from E. coli Reference Sequence
Serial Number Position Mutant Number of Strains Serial Number Position Mutant Number of Strains 1 2019 A→C 107 23 2102 G→T 107 2 2023 C→A 107 24 2103 C→A 90 3 2024 G→C 107 C→T 17 4 2025 C→G 107 25 2105 T→G 107 5 2026 T→A 107 26 2106 T→G 107 6 2029 G→A 107 27 2107 G→T 107 7 2037 A→T 107 28 2108 A→T 107 8 2038 G→C 107 29 2128 G→A 107 9 2039 T→G 107 30 2138 G→A 103 10 2040 G→T 107 G→C 1 11 2044 C→G 107 G→T 3 12 2052 A→G 107 31 2139 T→C 80 13 2057 G→A 107 T→G 23 14 2070 A→G 107 T→- 4 15 2076 T→C 107 32 2153 C→T 103 16 2088 A→G 107 C→G 4 17 2089 C→T 107 33 2160 C→T 107 18 2091 C→T 107 34 2163 A→T 107 19 2094 A→G 106 35 2165 C→G 107 A→T 1 36 2178 C→T 107 20 2095 A→T 90 37 2181 T→G 107 A→C 17 38 2182 -→A 107 21 2096 C→G 107 39 2184 A→C 107 22 2097 A→T 101 40 2185 A→G 107 A→C 6 41 2187 G→A 107 42 2190 T→G 107 87 2387 C→A 107 43 2193 T→C 107 88 2388 A→C 103 44 2195 T→A 81 A→T 4 T→C 23 89 2400 T→C 107 T→- 3 90 2401 G→A 107 45 2204 T→C 107 91 2402 G→C 107 46 2207 C→A 107 92 2403 T→C 107 47 2213 A→T 107 93 2409 A→G 107 48 2220 G→T 107 94 2418 C→G 107 49 2222 T→C 107 95 2419 C→T 107 50 2223 G→A 107 96 2420 A→G 107 51 2233 T→C 107 97 2443 T→C 107 52 2248 G→A 107 98 2463 A→C 107 53 2260 C→T 107 99 2464 C→T 107 54 2261 T→G 107 100 2465 C→T 107 55 2271 G→A 107 101 2466 G→C 107 56 2272 A→T 107 102 2476 T→C 107 57 2283 A→C 107 103 2488 C→G 107 58 2286 A→C 107 104 2489 G→A 107 59 2288 G→A 107 105 2490 G→T 107 60 2295 G→C 107 106 2491 T→G 107 61 2296 G→C 107 107 2515 A→G 107 62 2299 A→C 107 108 2518 A→G 107 63 2301 T→A 107 109 2532 A→G 107 64 2307 T→A 107 110 2535 T→C 107 65 2311 A→C 107 111 2549 A→T 107 66 2312 C→A 107 112 2550 T→G 107 67 2319 A→T 107 113 2562 A→C 107 68 2323 T→G 107 114 2563 T→A 107 69 2331 T→G 103 115 2570 T→C 107 T→A 4 116 2573 T→C 107 70 2332 G→T 107 117 2613 C→T 107 71 2336 T→C 107 118 2619 T→C 107 72 2340 C→G 107 119 2624 T→C 107 73 2341 C→G 107 120 2626 G→C 107 74 2356 C→A 107 121 2630 C→T 107 75 2357 G→C 107 122 2631 T→C 107 76 2359 G→T 107 123 2632 G→A 107 77 2362 G→A 107 124 2635 G→A 107 78 2363 G→A 101 125 2637 A→C 107 G→T 6 126 2638 C→T 107 79 2364 C→G 107 127 2644 G→A 107 80 2365 G→T 107 128 2645 G→A 107 81 2367 G→A 100 129 2646 G→A 107 G→- 7 130 2647 G→C 101 82 2374 T→G 107 G→T 6 83 2375 G→A 107 131 2651 C→T 107 84 2382 C→T 107 132 2652 T→C 107 85 2383 A→C 107 133 2672 A→G 107 86 2386 T→G 107 134 2673 G→A 107 Table 4. Species-specific Point Mutations in rrl Gene from 143 NTM Strains
Serial Number Positions E. coli Mutant M. abscessus (n = 46) M. massiliense (n = 4) M. fortuitum (n = 9) M. avium (n = 49) M. intracellulare (n = 31) M. gordonae (n = 4) 1 2081 T T→C - - 9 49 31 - 2 2083 G G→A - - 9 49 31 - 3 2099 T T→C - - 9 49 31 4 4 2101 A A→G 46 4 - 49 31 4 5 2131 T T→G 45 4 9 - 31 4 T→A 1 - - - - - 6 2136 G G→A - - - - 31 1 7 2137 T T→C 46 4 9 49 - 4 8 2140 G G→C - - 9 - - 4 G→A - - - 49 31 - 9 2141 G G→C 46 4 9 - - - 10 2150 C C→G 46 4 9 - - - C→T - - - 49 31 4 11 2151 T T→G - - 9 - - 4 12 2152 G G→A - - - - - 4 G→T 46 4 9 - - - 13 2154 A A→G 46 4 9 49 - 4 14 2162 G G→A 46 4 - - - - 15 2164 C C→T - - 9 49 31 4 16 2191 G G→A 46 4 - - - - 17 2192 A A→G - - 9 - - - 18 2196 T T→C - - - 49 31 4 19 2202 G G→C 46 4 9 - - - 20 2206 A A→G 46 4 9 - - - 21 2210 G G→C - - - 49 31 - 22 2212 - -→A 46 4 9 - - 4 23 2215 T T→C - - - - 8 - 24 2217 C C→G - - - 49 31 - 25 2221 T T→C 46 4 - - - - 26 2224 C C→G 46 4 9 - - - 27 2238 T T→C - - - 49 31 - 28 2267 T T→C 46 4 9 - - - 29 2321 G G→A - - - - 31 - G→T 46 4 9 - - 4 30 2322 T T→C - - - 49 31 - 31 2328 C C→T - - 9 49 31 4 32 2358 T T→C 41 4 - - - 1 T→G - - 9 - - - 33 2404 T T→C - - - 49 31 - 34 2406 T T→C - - - 49 31 - 35 2636 A A→G - - 9 - - - Table 5. Number of Resistant Strains and MIC Range at 3 and 14 Days for Two Types of erm(41) Sequevar Strains of M. abscessus subsp. abscessus and M. abscessus subsp. massiliense Absenting rrl Mutation (A2059G)
M. abscessus Subspecies Sequevar Antibiotic Number of Resistant Strains (n) MIC Range (μg/mL) & NBSP; Day 3 Day 14 Day 3 Day 14 M. abscessus subsp. abscessus T28 ERY 25 34 0.3-128.0 > 256.0 (n = 34) AZM 10 34 0.3-128.0 > 256.0 ROX 7 34 0.3-64.0 64.0-> 256.0 CLAR 3 34 0.3-16.0 8.0-> 128.0 C28 ERY 4 4 0.3-32.0 2.0-32.0 (n = 9) AZM 1 1 0.3-16.0 1.0-16.0 ROX 1 1 0.3-16.0 1.0-16.0 CLAR 0 0 0.3-4.0 1.0-4.0 M. abscessus subsp. massiliense T28 ERY 2 2 < 1.0-16.0 1.0-16.0 (n = 4) AZM 0 0 < 1.0 1.0 ROX 0 0 < 1.0 1.0 CLAR 0 0 < 1.0 1.0 -
[1] Glassroth J. Pulmonary disease due to nontuberculous mycobacteria. Chest, 2008; 133, 243-51. doi: 10.1378/chest.07-0358 [2] Halstrom S, Price P, Thomson R. Review: Environmental mycobacteria as a cause of human infection. Int J Mycobacteriol, 2015; 4, 81-91. doi: 10.1016/j.ijmyco.2015.03.002 [3] Moore JE, Kruijshaar ME, Ormerod LP, et al. Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995-2006. BMC Public Health, 2010; 10, 612. doi: 10.1186/1471-2458-10-612 [4] Shah NM, Davidson JA, Anderson LF, et al. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007-2012. BMC Infect Dis, 2016; 16, 195. doi: 10.1186/s12879-016-1521-3 [5] Wang L, Cheng S, Chen M, et al. The fifth national tuberculosis epidemiological survey in 2010. Chin J Antituber, 2012; 34, 485-508. (In Chinese) [6] Wang L, Zhang H, Ruan Y, et al. Tuberculosis prevalence in China, 1990-2010: a longitudinal analysis of national survey data. Lancet, 2014; 383, 2057-64. doi: 10.1016/S0140-6736(13)62639-2 [7] Brown-Elliott BA, Wallace RJ Jr. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev, 2002; 15, 716-46. doi: 10.1128/CMR.15.4.716-746.2002 [8] Kang YA, Koh WJ. Antibiotic treatment for nontuberculous mycobacterial lung disease. Expert Rev Respir Med, 2016; 10, 557-68. doi: 10.1586/17476348.2016.1165611 [9] Mougari F, Loiseau J, Veziris N, et al. Evaluation of the new GenoType NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. J Antimicrob Chemother, 2017; 72, 1669-77. doi: 10.1093/jac/dkx021 [10] Alvarez-Elcoro S, Enzler MJ. The macrolides: erythromycin, clarithromycin, and azithromycin. Mayo Clin Proc, 1999; 74, 613-34. doi: 10.4065/74.6.613 [11] Fyfe C, Grossman TH, Kerstein K, et al. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med, 2016; 6, a025395. http://cn.bing.com/academic/profile?id=b8d4ab56feba8aefee5ffc3d2e4930c4&encoded=0&v=paper_preview&mkt=zh-cn [12] Nasiri MJ, Haeili M, Ghazi M, et al. New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol, 2017; 8, 681. doi: 10.3389/fmicb.2017.00681 [13] Nash KA, Andini N, Zhang Y, et al. Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother, 2006; 50, 3476-8. doi: 10.1128/AAC.00402-06 [14] Zhang YY, Li YB, Huang MX, et al. Novel species including Mycobacterium fukienense sp. is found from tuberculosis patients in Fujian Province, China, using phylogenetic analysis of Mycobacterium chelonae/abscessus complex. Biomed Environ Sci, 2013; 26, 894-901. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=swyx201311004&dbname=CJFD&dbcode=CJFQ [15] Nguyen L, Chinnapapagari S, Thompson CJ. FbpA-Dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol, 2005; 187, 6603-11. doi: 10.1128/JB.187.19.6603-6611.2005 [16] Braibant M, Gilot P, Content J. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol Rev, 2000; 24, 449-67. doi: 10.1111/j.1574-6976.2000.tb00550.x [17] CLSI. Susceptibility testing of mycobacteria, Nocardiae, and other aerobic actinomycetes; approved standard—second edition. Wayne, PA; Clinical and Laboratory Standards Institute. 2011. [18] Wallace RJ, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother, 1996; 40, 1676-81. doi: 10.1164/rccm.200905-0704OC [19] Bastian S, Veziris N, Roux AL, et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother, 2011; 55, 775-81. doi: 10.1128/AAC.00861-10 [20] Nash KA, Brown-Elliott BA, Wallace RJ Jr. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother, 2009; 53, 1367-76. doi: 10.1128/AAC.01275-08 [21] Kirst HA, Sides GD. New directions for macrolide antibiotics: pharmacokinetics and clinical efficacy. Antimicrob Agents Chemother, 1989; 33, 1419-22. doi: 10.1128/AAC.33.9.1419 [22] Hirama T, Shiono A, Egashira H, et al. PCR-based rapid identification system using bridged nucleic acids for detection of clarithromycin-resistant Mycobacterium avium-M. intracellulare Complex Isolates. J Clin Microbiol, 2016; 54, 699-704. doi: 10.1128/JCM.02954-15 [23] Foo H, van Hal S, Jelfs P, et al. Antimicrobial resistance in non-tuberculous mycobacteria in New South Wales, 2002-2008. Int J Antimicrob Agents, 2009; 34, 182-4. doi: 10.1016/j.ijantimicag.2009.01.013 [24] Peters DH, Friedel HA, McTavish D. Azithromycin. A review of its antimicrobial activity, pharmacokinetic properties and clinical efficacy. Drugs, 1992; 44, 750-99. doi: 10.2165/00003495-199244050-00007 [25] Choi GE, Shin SJ, Won CJ, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med, 2012; 186, 917-25. doi: 10.1164/rccm.201111-2005OC [26] Maurer FP, Castelberg C, Quiblier C, et al. Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus. J Antimicrob Chemother, 2014; 69, 1559-63. doi: 10.1093/jac/dku007 [27] Struillou L, Cohen Y, Lounis N, et al. Activities of roxithromycin against Mycobacterium avium infections in human macrophages and C57BL/6 mice. Antimicrob Agents Chemother, 1995; 39, 878-81. doi: 10.1128/AAC.39.4.878 [28] Sodemoto K, Shimada Y, Nishijima C, et al. Successful treatment of cutaneous Mycobacterium chelonae infection with roxithromycin. J Dermatol, 2007; 34, 846-8. doi: 10.1111/jde.2007.34.issue-12 [29] Koh WJ, Jeon K, Lee NY, et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med, 2011; 183, 405-10. doi: 10.1164/rccm.201003-0395OC [30] Esteban J, Martin-de-Hijas NZ, Garcia-Almeida D, et al. Prevalence of erm methylase genes in clinical isolates of non-pigmented, rapidly growing mycobacteria. Clin Microbiol Infect, 2009; 15, 919-23. doi: 10.1111/j.1469-0691.2009.02757.x [31] Renvoise A, Bernard C, Veziris N, et al. Significant difference in drug susceptibility distribution between Mycobacterium avium and Mycobacterium intracellulare. J Clin Microbiol, 2014; 52, 4439-40. doi: 10.1128/JCM.02127-14 [32] van Ingen J, van der Laan T, Dekhuijzen R, et al. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents, 2010; 35, 169-73. doi: 10.1016/j.ijantimicag.2009.09.023 [33] Lee SH, Yoo HK, Kim SH, et al. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med, 2014; 34, 31-7. doi: 10.3343/alm.2014.34.1.31