Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018

Weixia Li Xiaodan Wang Bo Bi Jingjing Lu Zhengyuan Li Li Cao Hao Zhang

Weixia Li, Xiaodan Wang, Bo Bi, Jingjing Lu, Zhengyuan Li, Li Cao, Hao Zhang. Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018[J]. Biomedical and Environmental Sciences, 2024, 37(9): 1080-1085. doi: 10.3967/bes2024.144
Citation: Weixia Li, Xiaodan Wang, Bo Bi, Jingjing Lu, Zhengyuan Li, Li Cao, Hao Zhang. Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018[J]. Biomedical and Environmental Sciences, 2024, 37(9): 1080-1085. doi: 10.3967/bes2024.144

doi: 10.3967/bes2024.144

Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018

Funds: This study is supported by grants from Research Fund for Key Research and Development Project in Hainan, ZDYF2021GXJS018, Research Foundation for Advanced Talents of Hainan [No.820RC649]; and Prevention and Control of Hepatitis B in China [No.YGFK20200090].
More Information
    Author Bio:

    Weixia Li, female, born in 1985, PhD, majoring in health statistics

    Xiaodan Wang, female, born in 1975, Professor, majoring in health statistics

    Bo Bi, male, born in 1982, Professor, majoring in health statistics

    Corresponding author: Li Cao, E-mail: hy0208037@hainmc.edu.cn, Tel: 86-13086011958.; Hao Zhang, E-mail: 714606560@qq.com
  • &These authors contributed equally to this work.
  • &These authors contributed equally to this work.
    注释:
  • Figure  1.  Time series of the monthly number of pulmonary tuberculosis (PTB) cases, monthly incidence of PTB, monthly average temperature, and monthly average relative humidity in Hainan, 2004–2018.

    Figure  2.  Three-dimensional exposure-lag-response curves and corresponding contour plots showing the RRs of pulmonary tuberculosis (PTB) at lagged months with various meteorological factors. (A, B) Monthly average temperature (°C) and (C, D) monthly average relative humidity (%).

    Figure  3.  RRs (95% CI) of meteorological factors on the incidence of pulmonary tuberculosis (PTB).

    (A) Cumulative RR of the average temperature on the incidence of PTB at overall lag months (°C). (B) RRs of 17.00 °C on the incidence of PTB at each lag month. (C) RRs of 18.09 °C on the PTB incidence at each lag month. (D) RRs of the average temperature on the incidence of PTB at 7 lag months. (E) Cumulative RR of the average relative humidity (%) on the incidence of PTB at overall lag months. (F) RRs of a 73.00% relative humidity on the incidence of PTB at each lag month. (G) RRs of a 74.24% relative humidity on the incidence of PTB at each lag month. (H) RR of the average relative humidity on the incidence of PTB at 7 lag months. RR, relative risk.

    S1.   Summarized statistics of monthly PTB cases, monthly meteorological factors in Hainan, 2004–2018

    Variables Mean SD Minimum P10 P25 P50 P75 P90 Maximum
    Monthly PTB cases 802 180.19 364 603 684 773 910 1,065 1,307
    Monthly PTB incidence (1/100 000) 9.25 2.37 4.31 6.52 7.54 8.76 10.95 12.9 15.47
    Monthly average temperature (°C) 24.23 4.06 17 18.4 19.83 25.05 28.18 28.89 30.2
    Monthly average air pressure (hPa) 1010.46 3.66 999.1 1005.3 1009 1011 1012.58 1015.2 1018.6
    Monthly average relative humidity (%) 78.88 3.49 68.98 74.6 76.33 79.2 81.88 83 86.8
    Monthly average precipitation (mm) 117.3 96.09 1.8 15.51 36.1 78.95 191.78 261.53 401.6
      Note. SD is standard deviation of variables, and P10 , P25 , P50, P75, P90 are the 10th, 25th, 50th, 75th, 90th percentiles of variables, respectively.
    下载: 导出CSV

    S3.   The parameters determination of $ \mathit{l}\mathit{a}\mathit{g} $ time and degree of freedom of $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $ and natural cubic spline function

    (Lag1, Lag2) N (N1, N2) Whether it passes the
    significance test of RR1
    Whether it passes the
    significance test of RR2
    AIC criterion
    (12, 12) 6 (2, 3) Yes No 698.32
    (12, 12) 6 (3, 3) Yes No 698.06
    (12, 12) 6 (2, 2) No No 701.44
    (12, 12) 6 (3, 2) No No 701.91
    (12, 12) 7 (2, 3) Yes No 698.99
    (12, 12) 7 (3, 3) Yes No 698.28
    (12, 12) 7 (2, 2) No No 701.95
    (12, 12) 7 (3, 2) No No 701.48
    (12, 11) 6 (2, 3) Yes Yes 698.23
    (12, 11) 6 (3, 3) Yes Yes 698.35
    (12, 11) 6 (2, 2) Yes Yes 701.43
    (12, 11) 6 (3, 2) Yes Yes 700.7
    (12, 11) 7 (2, 3) Yes Yes 698.64
    (12, 11) 7 (3, 3) Yes Yes 697.41
    (12, 11) 7 (2, 2) Yes Yes 699.9
    (12, 11) 7 (3, 2) Yes Yes 700.9
    (13, 11) 6 (2, 3) Yes Yes 694.2
    (13, 11) 6 (3, 3) Yes Yes 694.05
    (13, 11) 6 (2, 2) Yes Yes 697.23
    (13, 11) 6 (3, 2) Yes Yes 694.95
    (13, 11) 7 (2, 3) Yes Yes 694.87
    (13, 11) 7 (3, 3) Yes Yes 693.2
    (13, 11) 7 (2, 2) Yes Yes 695.9
    (13, 11) 7 (3, 2) Yes Yes 695.95
    (14, 11) 6 (2, 3) No Yes 690.01
    (14, 11) 6 (3, 3) No Yes 690.03
    (14, 11) 6 (2, 2) No Yes 691.36
    (14, 11) 6 (3, 2) No Yes 692.3
    (14, 11) 7 (2, 3) No Yes 690.28
    (14, 11) 7 (3, 3) No No 690.15
    (14, 11) 7 (2, 2) No Yes 690.58
    (14, 11) 7 (3, 2) No Yes 691.5
      Note. Lag1: the maximum $ \mathit{l}\mathit{a}\mathit{g} $ time of average temperature. Lag2: the maximum $ \mathit{l}\mathit{a}\mathit{g} $ time of average relative humidity. N: the freedom of natural cubic spline of $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $. N1: the degrees of freedom of the natural cubic spline function in the expose-lag dimension of cross-basis terms for average temperature. N2: the degrees of freedom of the natural cubic spline function in the expose-lag dimension of cross-basis terms for average relative humidity. The significance test of RR1: the significance test of delayed RR at the average temperature corresponding to the maximum RR at the maximum lag1. The significance test of RR2: the significance test of delayed RR of average relative humidity corresponding to the maximum RR at the maximum lag2.
    下载: 导出CSV

    S4.   The parameters determination for internal knots number at equally spaced values for the natural cubic spline function in the cross-basis terms

    (M1, M2) Whether it passes the significance test of RR3 Whether it passes the significance test of RR4 AIC criterion
    (2, 3) Yes Yes 693.2
    (2, 2) Yes No 695.5
    (3, 2) Yes No 694.21
    (3, 3) Yes No 692.55
      Note. M1: the number of internal knots at equally spaced values for the natural cubic spline function in the cross-basis terms of average temperature. M2: the number of internal knots at equally spaced values for the natural cubic spline function in the cross-basis terms of average relative humidity. The significance test of RR3 : the significance test of delayed RR at the average temperature corresponding to the maximum RR at the maximum lag 13. The significance test of RR4 : the significance test of delayed RR of average relative humidity corresponding to the maximum RR at the maximum 11.
    下载: 导出CSV

    S8.   The RR (95% CI) of monthly average relative humidity on the PTB incidence at different lag months

    RH
    (%)
    lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11
    68.98 1.24
    (1.06,
    1.45)*
    1.16
    (1.02,
    1.31)*
    1.08
    (0.97,
    1.2)
    1.02
    (0.93,
    1.12)
    0.97
    (0.89,
    1.06)
    0.94
    (0.85,
    1.03)
    0.92
    (0.84,
    1.01)
    0.92
    (0.85,
    1)
    0.93
    (0.87,
    1.01)
    0.96
    (0.89,
    1.04)
    0.99
    (0.9,
    1.09)
    1.03
    (0.91,
    1.16)
    69.98 1.18
    (1.05,
    1.33)*
    1.13
    (1.02,
    1.25)*
    1.08
    (0.99,
    1.18)
    1.04
    (0.97,
    1.12)
    1.01
    (0.94,
    1.09)
    0.99
    (0.92,
    1.06)
    0.98
    (0.91,
    1.05)
    0.97
    (0.91,
    1.04)
    0.98
    (0.92,
    1.04)
    1
    (0.93,
    1.06)
    1.01
    (0.94,
    1.09)
    1.04
    (0.94,
    1.14)
    70.98 1.12
    (1.02,
    1.23)*
    1.1
    (1.02,
    1.19)*
    1.08
    (1.01,
    1.16)*
    1.06
    (1,
    1.13)*
    1.05
    (0.99,
    1.11)
    1.04
    (0.98,
    1.1)
    1.03
    (0.97,
    1.09)
    1.03
    (0.97,
    1.08)
    1.03
    (0.98,
    1.08)
    1.03
    (0.98,
    1.09)
    1.04
    (0.98,
    1.1)
    1.04
    (0.97,
    1.12)
    71.98 1.07
    (1.00,
    1.15)*
    1.08
    (1.01,
    1.15)*
    1.08
    (1.02,
    1.14)*
    1.08
    (1.02,
    1.14)*
    1.08
    (1.03,
    1.14)*
    1.08
    (1.03,
    1.14)*
    1.08
    (1.03,
    1.14)*
    1.08
    (1.02,
    1.13)*
    1.07
    (1.02,
    1.12)*
    1.06
    (1.02,
    1.12)*
    1.06
    (1.01,
    1.11)*
    1.05
    (0.99,
    1.11)
    72.98 1.03
    (0.98,
    1.09)
    1.05
    (1.00,
    1.11)*
    1.08
    (1.02,
    1.13)*
    1.09
    (1.04,
    1.15)*
    1.11
    (1.05,
    1.17)*
    1.12
    (1.06,
    1.18)*
    1.12
    (1.06,
    1.18)*
    1.12
    (1.06,
    1.17)*
    1.11
    (1.05,
    1.16)*
    1.09
    (1.04,
    1.14)*
    1.07
    (1.02,
    1.12)*
    1.05
    (1,
    1.11)*
    73.98 1.00
    (0.95,
    1.05)
    1.04
    (0.99,
    1.09)
    1.07
    (1.02,
    1.12)*
    1.1
    (1.05,
    1.16)*
    1.13
    (1.07,
    1.19)*
    1.14
    (1.08,
    1.21)*
    1.15
    (1.08,
    1.21)*
    1.14
    (1.08,
    1.2)*
    1.13
    (1.07,
    1.18)*
    1.11
    (1.06,
    1.16)*
    1.08
    (1.03,
    1.13)*
    1.05
    (1,
    1.11)*
    74.98 0.98
    (0.93,
    1.03)
    1.02
    (0.97,
    1.07)
    1.06
    (1.01,
    1.11)*
    1.1
    (1.04,
    1.15)*
    1.13
    (1.07,
    1.19)*
    1.15
    (1.08,
    1.21)*
    1.15
    (1.09,
    1.22)*
    1.15
    (1.09,
    1.21)*
    1.13
    (1.08,
    1.19)*
    1.11
    (1.06,
    1.16)*
    1.08
    (1.03,
    1.13)*
    1.05
    (1,
    1.11)*
    75.98 0.97
    (0.93,
    1.02)
    1.01
    (0.97,
    1.05)
    1.05
    (1.01,
    1.09)*
    1.08
    (1.04,
    1.13)*
    1.11
    (1.06,
    1.16)*
    1.13
    (1.07,
    1.19)*
    1.14
    (1.08,
    1.19)*
    1.13
    (1.08,
    1.19)*
    1.12
    (1.07,
    1.17)*
    1.1
    (1.05,
    1.14)*
    1.07
    (1.03,
    1.12)*
    1.04
    (1,
    1.09)*
    76.98 0.97
    (0.94,
    1.01)
    1.00
    (0.97,
    1.03)
    1.03
    (1,
    1.06)*
    1.05
    (1.02,
    1.08)*
    1.07
    (1.04,
    1.11)*
    1.09
    (1.05,
    1.13)*
    1.09
    (1.05,
    1.13)*
    1.09
    (1.05,
    1.13)*
    1.08
    (1.05,
    1.11)*
    1.07
    (1.04,
    1.1)*
    1.05
    (1.02,
    1.08)*
    1.03
    (1,
    1.07)*
    77.98 0.99
    (0.97,
    1.00)
    1.00
    (0.99,
    1.01)
    1.01
    (1,
    1.02)*
    1.02
    (1.01,
    1.04)*
    1.03
    (1.01,
    1.05)*
    1.04
    (1.02,
    1.05)*
    1.04
    (1.02,
    1.06)*
    1.04
    (1.02,
    1.06)*
    1.04
    (1.02,
    1.05)*
    1.03
    (1.02,
    1.04)*
    1.02
    (1.01,
    1.04)*
    1.02
    (1,
    1.03)*
    78.98 1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1.01)
    1
    (1, 1.01)
    1
    (1, 1.01)
    1
    (1, 1.01)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    79.98 1.00
    (0.99,
    1.01)
    1.00
    (0.99,
    1.01)
    1.00
    (1.00,
    1.01)
    1.00
    (1.00,
    1.01)
    1.00
    (1.00,
    1.1)*
    1.00
    (1,
    1.01)*
    1.00
    (0.99,
    1.01)
    1
    (0.99,
    1.01)
    1.00
    (0.99,
    1.00)
    1.00
    (0.99,
    1.00)
    0.99
    (0.99,
    1.00)
    0.99
    (0.98,
    1.00)
    80.98 0.99
    (0.97,
    1.02)
    1.00
    (0.98,
    1.02)
    1.01
    (1.00,
    1.03)
    1.02
    (1.00,
    1.04)
    1.02
    (1.01,
    1.04)*
    1.03
    (1.01,
    1.05)*
    1.03
    (1.01,
    1.04)*
    1.02
    (1,
    1.04)
    1.01
    (1.00,
    1.03)
    1.00
    (0.99,
    1.02)
    0.99
    (0.97,
    1.01)
    0.98
    (0.96,
    1.00)
    81.98 0.98
    (0.95,
    1.02)
    1.00
    (0.97,
    1.03)
    1.02
    (1,
    1.05)
    1.04
    (1.01,
    1.06)*
    1.05
    (1.02,
    1.08)*
    1.06
    (1.03,
    1.08)*
    1.05
    (1.03,
    1.08)*
    1.04
    (1.02,
    1.07)
    1.03
    (1.01,
    1.05)
    1.01
    (0.99,
    1.03)
    0.99
    (0.96,
    1.02)
    0.97
    (0.93,
    1.00)
    82.98 0.97
    (0.93,
    1.02)
    1.00
    (0.97,
    1.04)
    1.03
    (1,
    1.06)
    1.05
    (1.02,
    1.08)*
    1.06
    (1.03,
    1.09)*
    1.07
    (1.04,
    1.1)*
    1.07
    (1.04,
    1.1)*
    1.06
    (1.03,
    1.08)
    1.03
    (1.01,
    1.06)
    1.01
    (0.98,
    1.03)
    0.98
    (0.95,
    1.01)
    0.95
    (0.91,
    0.98)
    83.98 0.96
    (0.92,
    1.01)
    0.99
    (0.96,
    1.03)
    1.02
    (0.99,
    1.05)
    1.05
    (1.02,
    1.08)*
    1.07
    (1.04,
    1.1)*
    1.08
    (1.04,
    1.11)*
    1.07
    (1.04,
    1.1)*
    1.05
    (1.02,
    1.08)
    1.03
    (1.00,
    1.06)
    0.99
    (0.97,
    1.02)
    0.96
    (0.92,
    0.99)
    0.92
    (0.88,
    0.97)
    84.98 0.95
    (0.9,
    1.01)
    0.99
    (0.94,
    1.03)
    1.02
    (0.98,
    1.05)
    1.04
    (1.01,
    1.08)*
    1.06
    (1.03,
    1.1)*
    1.07
    (1.03,
    1.11)*
    1.06
    (1.02,
    1.1)*
    1.04
    (1.01,
    1.08)
    1.01
    (0.98,
    1.05)
    0.98
    (0.94,
    1.02)
    0.93
    (0.89,
    0.99)
    0.89
    (0.83,
    0.96)
    85.98 0.94
    (0.88,
    1.02)
    0.98
    (0.92,
    1.03)
    1.01
    (0.96,
    1.06)
    1.04
    (0.99,
    1.08)
    1.05
    (1,
    1.1)*
    1.06
    (1.01,
    1.12)*
    1.05
    (1.00,
    1.11)
    1.03
    (0.98,
    1.08)
    0.99
    (0.94,
    1.05)
    0.95
    (0.9,
    1.01)
    0.91
    (0.84,
    0.98)
    0.86
    (0.79,
    0.95)
      Note. *P-value<0.05, and RH is the monthly average relative humidity.
    下载: 导出CSV

    S2.   Spearman correlation coefficient between monthly PTB incidence and meteorological factors in Hainan, 2004—2018

    Factors Monthly PTB
    incidence
    Monthly average
    temperature
    Monthly average
    air pressure
    Monthly average
    relative humidity
    Monthly average
    precipitation
    Monthly PTB incidence 1 0.24* −0.26* 0.15* 0.21*
    Monthly average temperature 1 −0.71* 0.50* 0.81*
    Monthly average air pressure 1 −0.26* −0.58*
    Monthly average relative humidity 1 0.60*
    Monthly average precipitation 1
      Note. *P < 0.05.
    下载: 导出CSV

    S5.   The RR (95% CI) of monthly average temperature on the PTB incidence at different lag months

    TM
    (°C)
    lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13
    17 1.08
    (0.91, 1.29)
    1.16
    (0.99, 1.35)
    1.24
    (1.07, 1.44)*
    1.32
    (1.13, 1.55)*
    1.4
    (1.18, 1.66)*
    1.46
    (1.21, 1.76)*
    1.51
    (1.24, 1.84)*
    1.53
    (1.25, 1.87)*
    1.53
    (1.26, 1.86)*
    1.51
    (1.25, 1.81)*
    1.47
    (1.24, 1.75)*
    1.43
    (1.21, 1.68)*
    1.37
    (1.17, 1.61)*
    1.32
    (1.11, 1.56)*
    18 1.06
    (0.92, 1.23)
    1.12
    (0.99, 1.27)
    1.18
    (1.05, 1.33)*
    1.24
    (1.09, 1.41)*
    1.29
    (1.13, 1.49)*
    1.34
    (1.15, 1.56)*
    1.37
    (1.17, 1.62)*
    1.39
    (1.18, 1.64)*
    1.39
    (1.18, 1.64)*
    1.38
    (1.18, 1.61)*
    1.36
    (1.18, 1.57)*
    1.33
    (1.16, 1.53)*
    1.3
    (1.13, 1.49)*
    1.26
    (1.09, 1.46)*
    19 1.05
    (0.93, 1.19)
    1.09
    (0.98, 1.21)
    1.13
    (1.02, 1.25)*
    1.17
    (1.05, 1.30)*
    1.2
    (1.07, 1.35)*
    1.23
    (1.08, 1.41)*
    1.26
    (1.09, 1.45)*
    1.27
    (1.10, 1.47)*
    1.28
    (1.11, 1.47)*
    1.27
    (1.11, 1.46)*
    1.26
    (1.11, 1.43)*
    1.25
    (1.1, 1.41)*
    1.23
    (1.09, 1.39)*
    1.21
    (1.06, 1.38)*
    20 1.03
    (0.92, 1.16)
    1.06
    (0.96, 1.17)
    1.08
    (0.98, 1.19)
    1.11
    (1.00, 1.22)*
    1.13
    (1.01, 1.26)*
    1.15
    (1.01, 1.29)*
    1.16
    (1.02, 1.32)*
    1.17
    (1.03, 1.34)*
    1.18
    (1.03, 1.34)*
    1.18
    (1.04, 1.34)*
    1.18
    (1.05, 1.33)*
    1.17
    (1.05, 1.32)*
    1.17
    (1.04, 1.30)*
    1.16
    (1.03, 1.31)*
    21 1.02
    (0.92, 1.14)
    1.03
    (0.94, 1.14)
    1.05
    (0.95, 1.15)
    1.06
    (0.96, 1.17)
    1.07
    (0.96, 1.19)
    1.08
    (0.96, 1.21)
    1.09
    (0.96, 1.23)
    1.09
    (0.97, 1.24)
    1.1
    (0.97, 1.24)
    1.11
    (0.98, 1.24)
    1.11
    (0.99, 1.24)
    1.11
    (1.00, 1.24)*
    1.12
    (1.00, 1.24)*
    1.12
    (1.00, 1.25)*
    22 1.01
    (0.92, 1.11)
    1.02
    (0.93, 1.11)
    1.02
    (0.94, 1.11)
    1.02
    (0.93, 1.12)
    1.03
    (0.93, 1.13)
    1.03
    (0.93, 1.14)
    1.04
    (0.93, 1.16)
    1.04
    (0.93, 1.16)
    1.05
    (0.94, 1.17)
    1.05
    (0.95, 1.17)
    1.06
    (0.96, 1.17)
    1.07
    (0.97, 1.17)
    1.08
    (0.98, 1.18)
    1.08
    (0.98, 1.20)
    23 1.01
    (0.94, 1.08)
    1.00
    (0.94, 1.07)
    1.00
    (0.94, 1.07)
    1.00
    (0.94, 1.08)
    1.00
    (0.93, 1.08)
    1.00
    (0.93, 1.09)
    1.01
    (0.93, 1.09)
    1.01
    (0.93, 1.10)
    1.02
    (0.94, 1.10)
    1.02
    (0.95, 1.10)
    1.03
    (0.96, 1.11)
    1.04
    (0.97, 1.11)
    1.04
    (0.98, 1.12)
    1.05
    (0.98, 1.13)
    24 1
    (0.96, 1.04)
    1.00
    (0.97, 1.04)
    1.00
    (0.96, 1.03)
    1.00
    (0.96, 1.03)
    1.00
    (0.96, 1.04)
    1.00
    (0.95, 1.04)
    1.00
    (0.95, 1.04)
    1.00
    (0.96, 1.04)
    1.00
    (0.96, 1.05)
    1.01
    (0.96, 1.05)
    1.01
    (0.97, 1.05)
    1.01
    (0.98, 1.05)
    1.02
    (0.98, 1.06)
    1.03
    (0.99, 1.07)
    25 1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    26 1.00
    (0.97, 1.03)
    1.00
    (0.97, 1.03)
    1.01
    (0.98, 1.04)
    1.01
    (0.98, 1.04)
    1.01
    (0.98, 1.04)
    1.01
    (0.98, 1.05)
    1.01
    (0.97, 1.05)
    1.01
    (0.97, 1.05)
    1.01
    (0.97, 1.04)
    1.00
    (0.97, 1.04)
    1.00
    (0.96, 1.03)
    0.99
    (0.96, 1.02)
    0.98
    (0.95, 1.01)
    0.98
    (0.95, 1.01)
    27 1.00
    (0.94, 1.06)
    1.01
    (0.95, 1.06)
    1.01
    (0.96, 1.07)
    1.02
    (0.97, 1.08)
    1.02
    (0.97, 1.08)
    1.03
    (0.97, 1.09)
    1.03
    (0.96, 1.09)
    1.02
    (0.96, 1.09)
    1.01
    (0.95, 1.08)
    1.01
    (0.95, 1.07)
    0.99
    (0.94, 1.05)
    0.98
    (0.93, 1.04)
    0.97
    (0.91, 1.02)
    0.95
    (0.9, 1.01)
    28 1.00
    (0.92, 1.08)
    1.01
    (0.94, 1.08)
    1.02
    (0.96, 1.09)
    1.03
    (0.97, 1.10)
    1.04
    (0.97, 1.11)
    1.04
    (0.97, 1.12)
    1.04
    (0.97, 1.12)
    1.03
    (0.96, 1.11)
    1.02
    (0.95, 1.10)
    1.01
    (0.94, 1.08)
    0.99
    (0.92, 1.06)
    0.97
    (0.9, 1.04)
    0.95
    (0.88, 1.02)
    0.92
    (0.85, 1.00)
    29 1.00
    (0.9, 1.10)
    1.01
    (0.93, 1.10)
    1.03
    (0.95, 1.11)
    1.04
    (0.97, 1.11)
    1.05
    (0.98, 1.12)
    1.05
    (0.98, 1.13)
    1.05
    (0.98, 1.13)
    1.04
    (0.97, 1.12)
    1.03
    (0.95, 1.11)
    1.01
    (0.93, 1.09)
    0.98
    (0.91, 1.06)
    0.95
    (0.88, 1.04)
    0.92
    (0.84, 1.02)
    0.9
    (0.81, 1.00)
    30 1.00
    (0.87, 1.13)
    1.01
    (0.91, 1.13)
    1.03
    (0.94, 1.13)
    1.05
    (0.97, 1.13)
    1.06
    (0.98, 1.14)
    1.06
    (0.98, 1.15)
    1.06
    (0.98, 1.15)
    1.05
    (0.96, 1.14)
    1.03
    (0.94, 1.12)
    1.00
    (0.92, 1.10)
    0.97
    (0.88, 1.07)
    0.94
    (0.84, 1.04)
    0.9
    (0.8, 1.02)
    0.87
    (0.75, 1.00)
      Note. *P-value < 0.05, and TM is the monthly average temperature.
    下载: 导出CSV

    S6.   The cumulative RRs (95% CI) of monthly average temperature and monthly average relative humidity on the PTB incidence by different lag period

    Average temperature (°C) Average relative humidity (%)
    Lag Value RR (95% CI) Lag Value RR (95% CI)
    lag0-3 17 2.06 (1.13, 3.74)* lag0-3 73.00 1.28 (1.05, 1.57)*
    lag0-6 17 6.32 (2.22, 18.01)* lag0-6 73.00 1.79 (1.26, 2.53)*
    lag0-9 17 22.31 (4.85, 102.70)* lag0-9 73.00 2.40 (1.49, 3.87)*
    lag0-13 17 85.01 (12.11, 596.83)* lag0-11 73.00 2.72 (1.58, 4.67)*
    lag0-3 18.09 1.73 (1.08, 2.77)* lag0-3 74.24 1.20 (0.99, 1.45)
    lag0-6 18.09 4.02 (1.76, 9.15)* lag0-6 74.24 1.79 (1.28, 2.50)*
    lag0-9 18.09 10.51 (3.12, 35.40)* lag0-9 74.24 2.56 (1.60, 4.10)*
    lag0-13 18.09 30.64 (6.28, 149.50)* lag0-11 74.24 2.93 (1.71, 5.01)*
      Note. *P-value < 0.05.
    下载: 导出CSV

    S7.   The RRs (95% CI) of monthly average temperature and monthly average relative humidity on the PTB incidence at different lag months

    Lag Average temperature (°C) Average relative humidity (%)
    17.00 18.09 73.00 74.24
    lag0 1.08 (0.91, 1.29) 1.06 (0.92, 1.22) 1.03 (0.98, 1.09) 0.99 (0.94, 1.05)
    lag1 1.16 (0.99, 1.35) 1.12 (0.99, 1.27) 1.05 (1.00, 1.11)* 1.03 (0.98, 1.08)
    lag2 1.24 (1.07, 1.44)* 1.18 (1.05, 1.32)* 1.08 (1.02, 1.13)* 1.07 (1.02, 1.12)*
    lag3 1.32 (1.13, 1.55)* 1.23 (1.09, 1.39)* 1.09 (1.04, 1.15)* 1.10 (1.05, 1.16)*
    lag4 1.40 (1.18, 1.66)* 1.29 (1.12, 1.47)* 1.11 (1.05, 1.17)* 1.13 (1.07, 1.19)*
    lag5 1.46 (1.21, 1.76)* 1.33 (1.14, 1.54)* 1.12 (1.06, 1.18)* 1.14 (1.08, 1.21)*
    lag6 1.51 (1.24, 1.84)* 1.36 (1.16, 1.60)* 1.12 (1.06, 1.18)* 1.15 (1.09, 1.22)*
    lag7 1.53 (1.25, 1.87)* 1.38 (1.17, 1.62)* 1.12 (1.06, 1.17)* 1.15 (1.08, 1.21)*
    lag8 1.53 (1.26, 1.86)* 1.38 (1.18, 1.62)* 1.11 (1.05, 1.16)* 1.13 (1.07, 1.19)*
    lag9 1.51 (1.25, 1.81)* 1.37 (1.18, 1.60)* 1.09 (1.04, 1.14)* 1.11 (1.06, 1.16)*
    lag10 1.47 (1.24, 1.75)* 1.35 (1.17, 1.56)* 1.07 (1.02, 1.12)* 1.08 (1.03, 1.13)*
    lag11 1.43 (1.21, 1.68)* 1.32 (1.16, 1.52)* 1.05 (1.00, 1.11)* 1.05 (1.00, 1.11)*
    lag12 1.37 (1.17, 1.61)* 1.29 (1.13, 1.48)*
    lag13 1.32 (1.11, 1.56)* 1.26 (1.09, 1.46)*
      Note. *P-value < 0.05.
    下载: 导出CSV
  • [1] Hainan Provincial Bureau of Statistics, Survey Office of National Bureau of Statistics in Hainan. Hainan statistical yearbook 2023. China Statistics Press. 2023. (In Chinese)
    [2] Pu KZ, Su WD, Yan JM, et al. Study on influencing factors and prediction model of pulmonary tuberculosis in Hainan of China. Special health, 2022; 3−4. (In Chinese)
    [3] Nie YW, Lu YQ, Wang CC, et al. Effects and interaction of meteorological factors on pulmonary tuberculosis in Urumqi, China, 2013-2019. Front Public Health, 2022; 10, 951578. doi:  10.3389/fpubh.2022.951578
    [4] Xu M, Li Y, Liu B, et al. Temperature and humidity associated with increases in tuberculosis notifications: a time-series study in Hong Kong. Epidemiol Infect, 2021; 149, e8. doi:  10.1017/S0950268820003040
    [5] Chaw L, Liew SQR, Wong J. Association between climate variables and pulmonary tuberculosis incidence In Brunei Darussalam. Sci Rep, 2022; 12, 8775. doi:  10.1038/s41598-022-12796-z
    [6] Zheng YL, Emam M, Lu DM, et al. Analysis of the effect of temperature on tuberculosis incidence by distributed lag non-linear model in Kashgar city, China. Environ Sci Pollut Res, 2023; 30, 11530−41.
    [7] Huang K, Yang XJ, Hu CY, et al. Short-term effect of ambient temperature change on the risk of tuberculosis admissions: assessments of two exposure metrics. Environ Res, 2020; 189, 109900. doi:  10.1016/j.envres.2020.109900
    [8] Li ZQ, Liu Q, Zhan MY, et al. Meteorological factors contribute to the risk of pulmonary tuberculosis: a multicenter study in eastern China. Sci Total Environ, 2021; 793, 148621. doi:  10.1016/j.scitotenv.2021.148621
    [9] Kuddus MA, McBryde ES, Adegboye OA. Delay effect and burden of weather-related tuberculosis cases in Rajshahi province, Bangladesh, 2007-2012. Sci Rep, 2019; 9, 12720. doi:  10.1038/s41598-019-49135-8
    [10] Onozuka D, Hagihara A. The association of extreme temperatures and the incidence of tuberculosis in Japan. Int J Biometeorol, 2015; 59, 1107−14. doi:  10.1007/s00484-014-0924-3
  • [1] Qi Ye, Jing Chen, Yating Ji, Xiaoyu Lu, Jiale Deng, Nan Li, Wei Wei, Renjie Hou, Zhiyuan Li, Jianbang Xiang, Xu Gao, Xin Shen, Chongguang Yang.  Independent and Interactive Effects of Air Pollutants, Meteorological Factors, and Green Space on Tuberculosis Incidence in Shanghai . Biomedical and Environmental Sciences, 2025, 38(): 1-18. doi: 10.3967/bes2025.041
    [2] Tongyu Yang, Qingqing Wang, Yuchen Tian, Siyi Chen, Yilei Ma, Peng Wang, Suli Huang, Ji Peng, Jinquan Cheng, Jing Hu, Ping Yin.  Effects of Seasonal and Temperature Variations on the Association between Nitrogen Dioxide Exposure and First-Aid Incidence for Neurological Diseases in Shenzhen, China . Biomedical and Environmental Sciences, 2024, 37(10): 1213-1220. doi: 10.3967/bes2024.147
    [3] DONG Zhe, YAO Hong Yan, YU Shi Cheng, HUANG Fei, LIU Jian Jun, ZHAO Yan Lin, WANG Qi Qi.  Changes in Notified Incidence of Pulmonary Tuberculosis in China, 2005–2020 . Biomedical and Environmental Sciences, 2023, 36(2): 117-126. doi: 10.3967/bes2023.015
    [4] YANG Rui Jun, LIU Fu Qiang, SHI Xin Ji, QIAO Qiao, WANG Qian, ZANG Shuang.  Decreasing Trends in the Incidence of Age- and Sex-specific Hepatitis A Virus Infection in Hunan Province, China, from 2004–2020: A Joinpoint Analysis . Biomedical and Environmental Sciences, 2022, 35(11): 1063-1069. doi: 10.3967/bes2022.134
    [5] XU Cai Hong, ZHANG Xiao Meng, LIU Yan, HU Dong Mei, XIA Yin Yin, WANG Li, ZHANG Hui.  Factors Associated with Diagnostic Delay of Pulmonary Tuberculosis in China . Biomedical and Environmental Sciences, 2022, 35(1): 73-78. doi: 10.3967/bes2022.010
    [6] ZHAO Hong Qing, LIU Pei Pei, XUE Feng, LU Miao, QIN Xin Cheng, LI Kun.  Molecular Detection and Identification of Candidatus Ehrlichia Hainanensis, A Novel Ehrlichia Species in Rodents from Hainan Province, China . Biomedical and Environmental Sciences, 2021, 34(12): 1020-1023. doi: 10.3967/bes2021.138
    [7] LU Miao, TANG Guang Peng, BAI Xiao Song, QIN Xin Cheng, WANG Wen, GUO Wen Ping, LI Kun.  Molecular Detection of Tick-borne Pathogens in Ticks Collected from Hainan Island, China . Biomedical and Environmental Sciences, 2021, 34(7): 581-586. doi: 10.3967/bes2021.081
    [8] MA Yue Ling, LI Sheng, LIU Jiang Tao, HE Xiao Tao, LI Lan Yu, NIU Jing Ping, LUO Bin, ZHANG Kai.  Impact of Absolute Humidity and Temperature on Eczema . Biomedical and Environmental Sciences, 2021, 34(1): 61-65. doi: 10.3967/bes2021.008
    [9] WU Yue, LI Zhen Jun, YU Shi Cheng, CHEN Liang, WANG Ji Chun, QIN Yu, SONG Yu Dan, George F. GAO, DONG Xiao Ping, WANG Li Ping, ZHANG Qun, HE Guang Xue.  Epidemiological Characteristics of Notifiable Infectious Diseases among Foreign Cases in China, 2004–2017 . Biomedical and Environmental Sciences, 2020, 33(6): 421-430. doi: 10.3967/bes2020.057
    [10] ZHAO Fei, ZHANG Zhi Guo, MA Shu Bo, YANG Zhen, HE Yan Ping, WANG Lu Qin, OWITI Philip, MA Chao, LI Tao, DU Xin, ZHANG Can You, CHENG Jun, WANG Li Xia, HE Guang Xue, ZHANG Hui, LI Ke Xin.  Prevalence of Tuberculosis among Close Contacts of Index Cases in 27 Universities in Beijing, China, 2017–2018 . Biomedical and Environmental Sciences, 2020, 33(10): 780-784. doi: 10.3967/bes2020.104
    [11] ZHANG Ying, WANG Shi Gong, ZHANG Xiao Ling, CHENG Yi Fan, TANG Can Jun.  Mortality Risk Attributed to Ambient Temperature in Nanjing, China . Biomedical and Environmental Sciences, 2019, 32(1): 42-46. doi: 10.3967/bes2019.006
    [12] JIN Yan, FAN Jing Guang, PANG Jing, WEN Ke, ZHANG Pei Ying, WANG Huan Qiang, LI Tao.  Risk of Active Pulmonary Tuberculosis among Patients with Coal Workers' Pneumoconiosis: A Case-control Study in China . Biomedical and Environmental Sciences, 2018, 31(6): 448-453. doi: 10.3967/bes2018.058
    [13] MA Yan, HUANG Mai Ling, LI Tao, DU Jian, SHU Wei, XIE Shi Heng, WANG Hong Hong, ZHU Guo Feng, TAN Shou Yong, FU Yan Yong, MA Li Ping, ZHANG Lian Ying, LIU Fei Ying, HU Dai Yu, ZHANG Yan Ling, LI Xiang Qun, LIU Yu Hong, LI Liang.  Role of Diabetes Mellitus on Treatment Effects in Drug-susceptible Initial Pulmonary Tuberculosis Patients in China . Biomedical and Environmental Sciences, 2017, 30(9): 671-675. doi: 10.3967/bes2017.089
    [14] LI Qiang, BAO Xun Di, LIU Yun, OU Xi Chao, PANG Yu, ZHAO Yan Lin.  Comparison of Two Molecular Assays For Detecting Smear Negative Pulmonary Tuberculosis . Biomedical and Environmental Sciences, 2016, 29(4): 248-253. doi: 10.3967/bes2016.032
    [15] WANG Ni, MA Yan, LIU YU Hong, DU Jian, ZHANG Hui, XIE Shi Heng, Zhu Kun, LYU Xiao Ya, SHU Wei, WANG Hong Hong, ZHU Guo Feng, TAN Shou Yong, FU Yan Yong, MA Li Ping, ZHANG Lian Ying, LIU Fei Ying, HU Dai Yu, ZHANG Yan Ling, LI Xiang Qun, LI Liang.  Risk of Treatment Failure in Patients with Drug-susceptible Pulmonary Tuberculosis in China . Biomedical and Environmental Sciences, 2016, 29(8): 612-617. doi: 10.3967/bes2016.083
    [16] LAI Yu Ji, LIU Er Yong, WANG Li Ming, Jamie P MORANO, WANG Ning, Kaveh KHOSHNOOD, ZHOU Lin, CHENG Shi Ming.  Human Immunodeficiency Virus Infection-Associated Mortality during Pulmonary Tuberculosis Treatment in Six Provinces of China . Biomedical and Environmental Sciences, 2015, 28(6): 421-428. doi: 10.3967/bes2015.059
    [17] OU Chun Quan, YANG Jun, OU Qiao Qun, LIU Hua Zhang, LIN Guo Zhen, CHEN Ping Yan, QIAN Jun.  The Impact of Relative Humidity and Atmospheric Pressure on Mortality in Guangzhou, China . Biomedical and Environmental Sciences, 2014, 27(12): 917-925. doi: 10.3967/bes2014.132
    [18] ZHANG Hui, HUANG Fei, CHEN Wei, DU Xin, ZHOU Mai Geng, HU Jia, WANG Li Xia.  Estimates of Tuberculosis Mortality Rates in China Using the Disease Surveillance Point System, 2004-2010 . Biomedical and Environmental Sciences, 2012, 25(4): 483-488. doi: 10.3967/0895-3988.2012.04.015
    [19] SHUAI-MING ZHANG, YAO-HUA DAI, XIAO-HUA XIE, ZHAO-YANG FAN, ZANG-WEN TAN, YAN-FENG ZHANG.  Surveillance of Childhood Blood Lead Levels in 14 Cities of China in 2004-2006 . Biomedical and Environmental Sciences, 2009, 22(4): 288-296.
    [20] WAN-NIAN LIANG, TAO ZHAO, ZE-JUN LIU, BAO-YING GUAN, XIONG HE, MIN LIU, QI CHEN, GAI-FEN LIU, JIANG WU, RUO-GANG HUANG, XUE-QIN XIE, ZHE-NGLAI WU.  Severe Acute Respiratory Syndrome-Retrospect and Lessons of 2004 Outbreak in China . Biomedical and Environmental Sciences, 2006, 19(6): 445-451.
  • 24058+Supplementary Materials.pdf
  • 加载中
图(3) / 表ll (8)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  209
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 录用日期:  2024-08-01
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2024-09-20

Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018

doi: 10.3967/bes2024.144
    基金项目:  This study is supported by grants from Research Fund for Key Research and Development Project in Hainan, ZDYF2021GXJS018, Research Foundation for Advanced Talents of Hainan [No.820RC649]; and Prevention and Control of Hepatitis B in China [No.YGFK20200090].
    作者简介:

    Weixia Li, female, born in 1985, PhD, majoring in health statistics

    Xiaodan Wang, female, born in 1975, Professor, majoring in health statistics

    Bo Bi, male, born in 1982, Professor, majoring in health statistics

    通讯作者: Li Cao, E-mail: hy0208037@hainmc.edu.cn, Tel: 86-13086011958.; Hao Zhang, E-mail: 714606560@qq.com
注释:

English Abstract

Weixia Li, Xiaodan Wang, Bo Bi, Jingjing Lu, Zhengyuan Li, Li Cao, Hao Zhang. Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018[J]. Biomedical and Environmental Sciences, 2024, 37(9): 1080-1085. doi: 10.3967/bes2024.144
Citation: Weixia Li, Xiaodan Wang, Bo Bi, Jingjing Lu, Zhengyuan Li, Li Cao, Hao Zhang. Influence of Temperature and Humidity on the Incidence of Pulmonary Tuberculosis in Hainan, China, 2004–2018[J]. Biomedical and Environmental Sciences, 2024, 37(9): 1080-1085. doi: 10.3967/bes2024.144
  • According to the World Health Organization’s Global Tuberculosis Report 2023, there were 10.6 million cases of tuberculosis (TB) worldwide in 2022, an increase of 2.8% over 2021, and 1.3 million people had already died of the disease. The report also indicated that approximately 748,000 new cases occurred in China in 2022, accounting for 7.1% of the global total, with an incidence of 52/100,000. In that same year, the reported number of new TB cases in Hainan, China was 4,377, with an incidence of 43/100,000[1]. The most common form of TB infection is pulmonary tuberculosis (PTB). The development of the Hainan free-trade economic zone has brought new challenges to the prevention and control of PTB in the island province. Exploring the risk factors that affect the incidence of PTB has important value for guiding disease prevention and control measures. In a previous study, Pu et al. had found that the number of permanent residents and meteorological factors were the main factors influencing the incidence of PTB in Hainan[2]. Other studies have found nonlinear exposure-lag-response relationships between meteorological factors and PTB incidence[39], with the meteorological factors having different risk and delayed effects on the disease incidence in different regions.

    The People’s Government of Hainan Province governs four prefecture-level cities, five county-level cities, four counties, and six autonomous counties. By the end of 2022, the province had a permanent population of 104,321,000. Hainan Island, which is the main island, is located in the northern edge of the tropics (latitude 18°10'–20°10' N, longitude 108°37'–11°03' E) and has a unique tropical monsoon climate. Therefore, study of the delayed effects of meteorological factors on the incidence of PTB in Hainan is needed. In this study, a distributed lag nonlinear model (DLNM) was constructed to estimate the lag and nonlinearity effects of meteorological factors on the incidence of PTB in Hainan. The results could guide the development of effective measures to prevent and control the disease.

    The reported monthly incidences of PTB in Hainan (1/100,000) from 2004 to 2018 were obtained from the Data Center for Public Health Sciences (https://www.phsciencedata.cn/Share/). The 2004–2018 monthly data of several meteorological factors, including average temperature (°C), average air pressure (hPa), average relative humidity (%), and average precipitation (mm), were obtained from the China Meteorological Information Center (http://data.cma.cn/).

    The monthly number of PTB cases, PTB incidence, and meteorological factors were statistically described. Spearman’s correlation test was used to explore the correlations among the meteorological factors, and the influencing factors were determined by eliminating collinearity factors. Suppose that $ {Y}_{\mathit{t}} $ denotes the PTB incidence at month $ \mathit{t} $ and follows a Poisson distribution; then, the DLNM would be described as follows:

    $$ \begin{aligned} {log}[{E}\left({{Y}}_{{t}}\right)]=\; & \alpha +cb(temp,lag)+cb(hr,lag)\;+\\ & ns(time,6)+\beta month \end{aligned} $$

    where $ E(Y_t)$ is the expected number of PTB incidences, $ {\alpha } $ is the intercept, $ cb$ is the cross-basis term constructed for each meteorological factor, and $ \mathit{l}\mathit{a}\mathit{g} $ is the maximum lag time. The priori lag time for $ \mathit{l}\mathit{a}\mathit{g} $ was 12[3], and the maximum lag time was 20[4]. The cross-basis terms were composed of two dimensions, wherein the exposure–response dimension fitting was modeled using natural cubic splines with 2 or 3 internal knots at equally spaced values, and the exposure–lag dimension fitting adopted a natural cubic spline function with an a priori degrees of freedom of 3[3,5]. Because the author had found that the monthly incidence of PTB had a long-term trend and seasonality[2], $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $ was used to represent the long-term trend and seasonality, with a natural cubic spline $ \mathit{n}\mathit{s} $ and a priori degrees of freedom of 6 or 7, and $ \mathit{m}\mathit{o}\mathit{n}\mathit{t}\mathit{h} $ was included as the indicator variable.

    For parameter determination, a certain number of internal knots of the natural spline function for the exposure-response dimension was first assumed to be given. Then, the optimal maximum time of $ \mathit{l}\mathit{a}\mathit{g} $ was determined on the basis of the prior maximum time for $ \mathit{l}\mathit{a}\mathit{g} $, the degrees of freedom of $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $, and the natural cubic spline function in the exposure–lag dimension using the significance test of risk rate at maximum lag time. Next, the optimal degrees of freedom of $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $ and the natural cubic spline function were determined using the Akaike information criterion (AIC). Finally, the number of optimal knots was calculated on the basis of the optimal parameters determined using the significance test of delayed relative risk (RR) and AIC. The RRs of the monthly PTB incidence at each meteorological factor at different lag months, compared with their median, were reported with corresponding 95% confidence intervals (95% CI). The statistical analyses were performed using the “dlnm” package in R software (Version 4.2.2) and Python 3.11.7. A P value of less than 0.05 was considered statistically significant.

    The distributions of monthly PTB cases and meteorological factors in Hainan were summarized (Supplementary Table S1, available in www.besjournal.com). Figure 1 shows the time series of the various monthly data. In total, there were 144,394 cases of PTB, with a mean of 802 cases. Spearman’s correlation analysis (Supplementary Table S2, available in www.besjournal.com) revealed associations of the average temperature with the average air pressure and average precipitation, with correlation coefficients of –0.71 and 0.81, respectively. We eventually explored the impact of monthly average temperature and relative humidity on the incidence of PTB.

    Figure 1.  Time series of the monthly number of pulmonary tuberculosis (PTB) cases, monthly incidence of PTB, monthly average temperature, and monthly average relative humidity in Hainan, 2004–2018.

    Table S1.  Summarized statistics of monthly PTB cases, monthly meteorological factors in Hainan, 2004–2018

    Variables Mean SD Minimum P10 P25 P50 P75 P90 Maximum
    Monthly PTB cases 802 180.19 364 603 684 773 910 1,065 1,307
    Monthly PTB incidence (1/100 000) 9.25 2.37 4.31 6.52 7.54 8.76 10.95 12.9 15.47
    Monthly average temperature (°C) 24.23 4.06 17 18.4 19.83 25.05 28.18 28.89 30.2
    Monthly average air pressure (hPa) 1010.46 3.66 999.1 1005.3 1009 1011 1012.58 1015.2 1018.6
    Monthly average relative humidity (%) 78.88 3.49 68.98 74.6 76.33 79.2 81.88 83 86.8
    Monthly average precipitation (mm) 117.3 96.09 1.8 15.51 36.1 78.95 191.78 261.53 401.6
      Note. SD is standard deviation of variables, and P10 , P25 , P50, P75, P90 are the 10th, 25th, 50th, 75th, 90th percentiles of variables, respectively.

    The optimal $ \mathit{l}\mathit{a}\mathit{g} $ times of temperature and relative humidity were 13 and 11 months, respectively, and the optimal degrees of freedom for $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $ was 7. The degrees of freedom for the natural cubic spline functions of temperature and relative humidity in the exposure–lag dimension were both 3, respectively (Supplementary Table S3, available in www.besjournal.com). The numbers of internal knots in the cross-basis terms of temperature and relative humidity were 2 and 3, respectively (Supplementary Table S4, available in www.besjournal.com).

    Table S3.  The parameters determination of $ \mathit{l}\mathit{a}\mathit{g} $ time and degree of freedom of $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $ and natural cubic spline function

    (Lag1, Lag2) N (N1, N2) Whether it passes the
    significance test of RR1
    Whether it passes the
    significance test of RR2
    AIC criterion
    (12, 12) 6 (2, 3) Yes No 698.32
    (12, 12) 6 (3, 3) Yes No 698.06
    (12, 12) 6 (2, 2) No No 701.44
    (12, 12) 6 (3, 2) No No 701.91
    (12, 12) 7 (2, 3) Yes No 698.99
    (12, 12) 7 (3, 3) Yes No 698.28
    (12, 12) 7 (2, 2) No No 701.95
    (12, 12) 7 (3, 2) No No 701.48
    (12, 11) 6 (2, 3) Yes Yes 698.23
    (12, 11) 6 (3, 3) Yes Yes 698.35
    (12, 11) 6 (2, 2) Yes Yes 701.43
    (12, 11) 6 (3, 2) Yes Yes 700.7
    (12, 11) 7 (2, 3) Yes Yes 698.64
    (12, 11) 7 (3, 3) Yes Yes 697.41
    (12, 11) 7 (2, 2) Yes Yes 699.9
    (12, 11) 7 (3, 2) Yes Yes 700.9
    (13, 11) 6 (2, 3) Yes Yes 694.2
    (13, 11) 6 (3, 3) Yes Yes 694.05
    (13, 11) 6 (2, 2) Yes Yes 697.23
    (13, 11) 6 (3, 2) Yes Yes 694.95
    (13, 11) 7 (2, 3) Yes Yes 694.87
    (13, 11) 7 (3, 3) Yes Yes 693.2
    (13, 11) 7 (2, 2) Yes Yes 695.9
    (13, 11) 7 (3, 2) Yes Yes 695.95
    (14, 11) 6 (2, 3) No Yes 690.01
    (14, 11) 6 (3, 3) No Yes 690.03
    (14, 11) 6 (2, 2) No Yes 691.36
    (14, 11) 6 (3, 2) No Yes 692.3
    (14, 11) 7 (2, 3) No Yes 690.28
    (14, 11) 7 (3, 3) No No 690.15
    (14, 11) 7 (2, 2) No Yes 690.58
    (14, 11) 7 (3, 2) No Yes 691.5
      Note. Lag1: the maximum $ \mathit{l}\mathit{a}\mathit{g} $ time of average temperature. Lag2: the maximum $ \mathit{l}\mathit{a}\mathit{g} $ time of average relative humidity. N: the freedom of natural cubic spline of $ \mathit{t}\mathit{i}\mathit{m}\mathit{e} $. N1: the degrees of freedom of the natural cubic spline function in the expose-lag dimension of cross-basis terms for average temperature. N2: the degrees of freedom of the natural cubic spline function in the expose-lag dimension of cross-basis terms for average relative humidity. The significance test of RR1: the significance test of delayed RR at the average temperature corresponding to the maximum RR at the maximum lag1. The significance test of RR2: the significance test of delayed RR of average relative humidity corresponding to the maximum RR at the maximum lag2.

    Table S4.  The parameters determination for internal knots number at equally spaced values for the natural cubic spline function in the cross-basis terms

    (M1, M2) Whether it passes the significance test of RR3 Whether it passes the significance test of RR4 AIC criterion
    (2, 3) Yes Yes 693.2
    (2, 2) Yes No 695.5
    (3, 2) Yes No 694.21
    (3, 3) Yes No 692.55
      Note. M1: the number of internal knots at equally spaced values for the natural cubic spline function in the cross-basis terms of average temperature. M2: the number of internal knots at equally spaced values for the natural cubic spline function in the cross-basis terms of average relative humidity. The significance test of RR3 : the significance test of delayed RR at the average temperature corresponding to the maximum RR at the maximum lag 13. The significance test of RR4 : the significance test of delayed RR of average relative humidity corresponding to the maximum RR at the maximum 11.

    Figure 2A shows a three-dimensional plot of the estimated effect of temperature on the incidence of PTB at 0–13 lag months. As shown in Figure 2B, the average temperature between 17.00 °C and 21.15 °C had significant delayed risk effects. With increasing lag, the RR first increased gradually and then decreased and peaked with lag 7 at the minimum average temperature of 17.00 °C (Supplementary Table S5, available in www.besjournal.com). A low temperature was also a risk factor for increasing the incidences of TB[6,7] and PTB[4,8]. By contrast, although a high temperature had neither a significant risk or protective effect on the incidence of PTB in Hainan, it was a risk factor for both TB[9] and PTB[3,5,6,10]. The RR decreased with increasing temperature, which was consistent with the PTB incidence[8,9]. With increasing lag, the RR of PTB incidence first gradually increased and then gradually decreased, consistent with results observed for Hong Kong, China[4]. However in Kashgar, the trend of RR of TB differs significantly, attributed to the substantial differences in their climate characteristics[6].

    Figure 2.  Three-dimensional exposure-lag-response curves and corresponding contour plots showing the RRs of pulmonary tuberculosis (PTB) at lagged months with various meteorological factors. (A, B) Monthly average temperature (°C) and (C, D) monthly average relative humidity (%).

    As shown in Figure 3A, the overall cumulative RR peaked at 17.00 °C (RR = 85.01, 95% CI: 12.11–596.83) (Supplementary Table S6, available in www.besjournal.com). Figures 3B and 3C show that the risk effects at both 17.00 °C and 18.09 °C first gradually increased with increase in the lag order, reaching their peak values at lag 7, respectively (RR = 1.53, 95% CI: 1.25–1.87; RR = 1.38, 95% CI: 1.17–1.62), and then gradually decreased thereafter (Supplementary Table S7, available in www.besjournal.com). Figure 3D shows that there were significant risk effects between 17.00 °C and 21.13 °C at lag 7, where with increase in the average temperature, the RR values showed a decreasing trend. In another study on Chinese Hong Kong, the longest lag with a delayed RR of PTB was 15 months, and the delayed lag of the maximum RR was 14 months[4], which were inconsistent with the results of our study. These diverging results may be due to the fact that the minimum monthly average temperature in Hong Kong, China is approximately 3 °C lower than that in Hainan.

    Figure 3.  RRs (95% CI) of meteorological factors on the incidence of pulmonary tuberculosis (PTB).

    Figure 2C depicts a three-dimensional plot of the estimated effect of average relative humidity on the incidence of PTB at 0–11 lag months. As shown in Figure 2D, an average relative humidity of between 68.98% and 79.19% had significant delayed risk effects on the incidence of PTB (Supplementary Table S8, available in www.besjournal.com). The RR first increased and then decreased with increasing relative humidity and lag time, which are consistent with the results of Chinese Hong Kong study[4]. However, other studies have either shown that a high relative humidity has a significant risk effect on TB[8,9] or that relative humidity was not a significant risk factor for PTB[5]. Nie et al. showed that a relative humidity above 64.1% had a risk effect on PTB in Urumqi, with the RR increasing with increase in the humidity value[3], which was inconsistent with our results. This is because Urumqi lies to the north of China and is drier than Hainan.

    Table S8.  The RR (95% CI) of monthly average relative humidity on the PTB incidence at different lag months

    RH
    (%)
    lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11
    68.98 1.24
    (1.06,
    1.45)*
    1.16
    (1.02,
    1.31)*
    1.08
    (0.97,
    1.2)
    1.02
    (0.93,
    1.12)
    0.97
    (0.89,
    1.06)
    0.94
    (0.85,
    1.03)
    0.92
    (0.84,
    1.01)
    0.92
    (0.85,
    1)
    0.93
    (0.87,
    1.01)
    0.96
    (0.89,
    1.04)
    0.99
    (0.9,
    1.09)
    1.03
    (0.91,
    1.16)
    69.98 1.18
    (1.05,
    1.33)*
    1.13
    (1.02,
    1.25)*
    1.08
    (0.99,
    1.18)
    1.04
    (0.97,
    1.12)
    1.01
    (0.94,
    1.09)
    0.99
    (0.92,
    1.06)
    0.98
    (0.91,
    1.05)
    0.97
    (0.91,
    1.04)
    0.98
    (0.92,
    1.04)
    1
    (0.93,
    1.06)
    1.01
    (0.94,
    1.09)
    1.04
    (0.94,
    1.14)
    70.98 1.12
    (1.02,
    1.23)*
    1.1
    (1.02,
    1.19)*
    1.08
    (1.01,
    1.16)*
    1.06
    (1,
    1.13)*
    1.05
    (0.99,
    1.11)
    1.04
    (0.98,
    1.1)
    1.03
    (0.97,
    1.09)
    1.03
    (0.97,
    1.08)
    1.03
    (0.98,
    1.08)
    1.03
    (0.98,
    1.09)
    1.04
    (0.98,
    1.1)
    1.04
    (0.97,
    1.12)
    71.98 1.07
    (1.00,
    1.15)*
    1.08
    (1.01,
    1.15)*
    1.08
    (1.02,
    1.14)*
    1.08
    (1.02,
    1.14)*
    1.08
    (1.03,
    1.14)*
    1.08
    (1.03,
    1.14)*
    1.08
    (1.03,
    1.14)*
    1.08
    (1.02,
    1.13)*
    1.07
    (1.02,
    1.12)*
    1.06
    (1.02,
    1.12)*
    1.06
    (1.01,
    1.11)*
    1.05
    (0.99,
    1.11)
    72.98 1.03
    (0.98,
    1.09)
    1.05
    (1.00,
    1.11)*
    1.08
    (1.02,
    1.13)*
    1.09
    (1.04,
    1.15)*
    1.11
    (1.05,
    1.17)*
    1.12
    (1.06,
    1.18)*
    1.12
    (1.06,
    1.18)*
    1.12
    (1.06,
    1.17)*
    1.11
    (1.05,
    1.16)*
    1.09
    (1.04,
    1.14)*
    1.07
    (1.02,
    1.12)*
    1.05
    (1,
    1.11)*
    73.98 1.00
    (0.95,
    1.05)
    1.04
    (0.99,
    1.09)
    1.07
    (1.02,
    1.12)*
    1.1
    (1.05,
    1.16)*
    1.13
    (1.07,
    1.19)*
    1.14
    (1.08,
    1.21)*
    1.15
    (1.08,
    1.21)*
    1.14
    (1.08,
    1.2)*
    1.13
    (1.07,
    1.18)*
    1.11
    (1.06,
    1.16)*
    1.08
    (1.03,
    1.13)*
    1.05
    (1,
    1.11)*
    74.98 0.98
    (0.93,
    1.03)
    1.02
    (0.97,
    1.07)
    1.06
    (1.01,
    1.11)*
    1.1
    (1.04,
    1.15)*
    1.13
    (1.07,
    1.19)*
    1.15
    (1.08,
    1.21)*
    1.15
    (1.09,
    1.22)*
    1.15
    (1.09,
    1.21)*
    1.13
    (1.08,
    1.19)*
    1.11
    (1.06,
    1.16)*
    1.08
    (1.03,
    1.13)*
    1.05
    (1,
    1.11)*
    75.98 0.97
    (0.93,
    1.02)
    1.01
    (0.97,
    1.05)
    1.05
    (1.01,
    1.09)*
    1.08
    (1.04,
    1.13)*
    1.11
    (1.06,
    1.16)*
    1.13
    (1.07,
    1.19)*
    1.14
    (1.08,
    1.19)*
    1.13
    (1.08,
    1.19)*
    1.12
    (1.07,
    1.17)*
    1.1
    (1.05,
    1.14)*
    1.07
    (1.03,
    1.12)*
    1.04
    (1,
    1.09)*
    76.98 0.97
    (0.94,
    1.01)
    1.00
    (0.97,
    1.03)
    1.03
    (1,
    1.06)*
    1.05
    (1.02,
    1.08)*
    1.07
    (1.04,
    1.11)*
    1.09
    (1.05,
    1.13)*
    1.09
    (1.05,
    1.13)*
    1.09
    (1.05,
    1.13)*
    1.08
    (1.05,
    1.11)*
    1.07
    (1.04,
    1.1)*
    1.05
    (1.02,
    1.08)*
    1.03
    (1,
    1.07)*
    77.98 0.99
    (0.97,
    1.00)
    1.00
    (0.99,
    1.01)
    1.01
    (1,
    1.02)*
    1.02
    (1.01,
    1.04)*
    1.03
    (1.01,
    1.05)*
    1.04
    (1.02,
    1.05)*
    1.04
    (1.02,
    1.06)*
    1.04
    (1.02,
    1.06)*
    1.04
    (1.02,
    1.05)*
    1.03
    (1.02,
    1.04)*
    1.02
    (1.01,
    1.04)*
    1.02
    (1,
    1.03)*
    78.98 1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1.01)
    1
    (1, 1.01)
    1
    (1, 1.01)
    1
    (1, 1.01)
    1
    (1, 1)
    1
    (1, 1)
    1
    (1, 1)
    79.98 1.00
    (0.99,
    1.01)
    1.00
    (0.99,
    1.01)
    1.00
    (1.00,
    1.01)
    1.00
    (1.00,
    1.01)
    1.00
    (1.00,
    1.1)*
    1.00
    (1,
    1.01)*
    1.00
    (0.99,
    1.01)
    1
    (0.99,
    1.01)
    1.00
    (0.99,
    1.00)
    1.00
    (0.99,
    1.00)
    0.99
    (0.99,
    1.00)
    0.99
    (0.98,
    1.00)
    80.98 0.99
    (0.97,
    1.02)
    1.00
    (0.98,
    1.02)
    1.01
    (1.00,
    1.03)
    1.02
    (1.00,
    1.04)
    1.02
    (1.01,
    1.04)*
    1.03
    (1.01,
    1.05)*
    1.03
    (1.01,
    1.04)*
    1.02
    (1,
    1.04)
    1.01
    (1.00,
    1.03)
    1.00
    (0.99,
    1.02)
    0.99
    (0.97,
    1.01)
    0.98
    (0.96,
    1.00)
    81.98 0.98
    (0.95,
    1.02)
    1.00
    (0.97,
    1.03)
    1.02
    (1,
    1.05)
    1.04
    (1.01,
    1.06)*
    1.05
    (1.02,
    1.08)*
    1.06
    (1.03,
    1.08)*
    1.05
    (1.03,
    1.08)*
    1.04
    (1.02,
    1.07)
    1.03
    (1.01,
    1.05)
    1.01
    (0.99,
    1.03)
    0.99
    (0.96,
    1.02)
    0.97
    (0.93,
    1.00)
    82.98 0.97
    (0.93,
    1.02)
    1.00
    (0.97,
    1.04)
    1.03
    (1,
    1.06)
    1.05
    (1.02,
    1.08)*
    1.06
    (1.03,
    1.09)*
    1.07
    (1.04,
    1.1)*
    1.07
    (1.04,
    1.1)*
    1.06
    (1.03,
    1.08)
    1.03
    (1.01,
    1.06)
    1.01
    (0.98,
    1.03)
    0.98
    (0.95,
    1.01)
    0.95
    (0.91,
    0.98)
    83.98 0.96
    (0.92,
    1.01)
    0.99
    (0.96,
    1.03)
    1.02
    (0.99,
    1.05)
    1.05
    (1.02,
    1.08)*
    1.07
    (1.04,
    1.1)*
    1.08
    (1.04,
    1.11)*
    1.07
    (1.04,
    1.1)*
    1.05
    (1.02,
    1.08)
    1.03
    (1.00,
    1.06)
    0.99
    (0.97,
    1.02)
    0.96
    (0.92,
    0.99)
    0.92
    (0.88,
    0.97)
    84.98 0.95
    (0.9,
    1.01)
    0.99
    (0.94,
    1.03)
    1.02
    (0.98,
    1.05)
    1.04
    (1.01,
    1.08)*
    1.06
    (1.03,
    1.1)*
    1.07
    (1.03,
    1.11)*
    1.06
    (1.02,
    1.1)*
    1.04
    (1.01,
    1.08)
    1.01
    (0.98,
    1.05)
    0.98
    (0.94,
    1.02)
    0.93
    (0.89,
    0.99)
    0.89
    (0.83,
    0.96)
    85.98 0.94
    (0.88,
    1.02)
    0.98
    (0.92,
    1.03)
    1.01
    (0.96,
    1.06)
    1.04
    (0.99,
    1.08)
    1.05
    (1,
    1.1)*
    1.06
    (1.01,
    1.12)*
    1.05
    (1.00,
    1.11)
    1.03
    (0.98,
    1.08)
    0.99
    (0.94,
    1.05)
    0.95
    (0.9,
    1.01)
    0.91
    (0.84,
    0.98)
    0.86
    (0.79,
    0.95)
      Note. *P-value<0.05, and RH is the monthly average relative humidity.

    Figure 3E shows a significant cumulative RR when the relative humidity is above 71.00%, with the maximum reached at 74.24% relative humidity (RR = 2.93, 95% CI: 1.71–5.01). A relative humidity of 74.24% resulted in a significant cumulative RR in different lag periods, except for the 0–3 lag months (Supplementary Table S6). A relative humidity of 73.00% resulted in a significant RR at lags of 1–11 months, whereas 74.24% relative humidity resulted in a significant RR at lags of 2–11 months (Supplementary Table S7). As evident in Figures 3F and 3G, the risk effects on the incidence of PTB first increased and then decreased with increase in the lag time. The delayed risk effect of 74.24% relative humidity on the incidence of PTB peaked at lag 6 (RR = 1.15, 95% CI: 1.09–1.22). Figure 3H shows that an average relative humidity of between 72.60% and 77.49% had significant risk effects at lag 7. With an increase in relative humidity, the RR first increased and then decreased, peaking at 74.24% relative humidity.

    The model showed that a low average temperature and low average relative humidity do not have significant risk effects on the incidence of PTB in the same period, but there were significant risk effects after 2 months and 1 month, respectively, which peaked after 7 and 6 months, respectively. These results suggest that we should be vigilant and strengthen infection prevention and control measures after incidences of low mean temperature and relative humidity conditions.

    This study had several limitations. First, considering the impact of corona virus disease 2019 after 2019, we fitted the model with data from 2018 and before. Second, the model did not take into account confounding factors such as air pollution and the interactions among factors, which may lead to a certain bias. Third, the sample of monthly data may be limited for evaluating the risk effects in the short term.

    No potential conflicts of interest were disclosed.

    Weixia Li proposed concepts, analyzed the data, and wrote the manuscript. Xiaodan Wang managed and analyzed data. Bo Bi performed software visualization. Jingjing Lu searched for and investigated resources. Zhengyuan Li performed data curation. Li Cao proposed concepts and methodology and participated in the review and editing of the manuscript. Hao Zhang proposed concepts, performed project administration and supervision, and participated in the review and editing of the manuscript.

    • The study described in this article did not involve any experiments conducted on human participants or animals by any of the authors.

    • Table S2.  Spearman correlation coefficient between monthly PTB incidence and meteorological factors in Hainan, 2004—2018

      Factors Monthly PTB
      incidence
      Monthly average
      temperature
      Monthly average
      air pressure
      Monthly average
      relative humidity
      Monthly average
      precipitation
      Monthly PTB incidence 1 0.24* −0.26* 0.15* 0.21*
      Monthly average temperature 1 −0.71* 0.50* 0.81*
      Monthly average air pressure 1 −0.26* −0.58*
      Monthly average relative humidity 1 0.60*
      Monthly average precipitation 1
        Note. *P < 0.05.

      Table S5.  The RR (95% CI) of monthly average temperature on the PTB incidence at different lag months

      TM
      (°C)
      lag0 lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10 lag11 lag12 lag13
      17 1.08
      (0.91, 1.29)
      1.16
      (0.99, 1.35)
      1.24
      (1.07, 1.44)*
      1.32
      (1.13, 1.55)*
      1.4
      (1.18, 1.66)*
      1.46
      (1.21, 1.76)*
      1.51
      (1.24, 1.84)*
      1.53
      (1.25, 1.87)*
      1.53
      (1.26, 1.86)*
      1.51
      (1.25, 1.81)*
      1.47
      (1.24, 1.75)*
      1.43
      (1.21, 1.68)*
      1.37
      (1.17, 1.61)*
      1.32
      (1.11, 1.56)*
      18 1.06
      (0.92, 1.23)
      1.12
      (0.99, 1.27)
      1.18
      (1.05, 1.33)*
      1.24
      (1.09, 1.41)*
      1.29
      (1.13, 1.49)*
      1.34
      (1.15, 1.56)*
      1.37
      (1.17, 1.62)*
      1.39
      (1.18, 1.64)*
      1.39
      (1.18, 1.64)*
      1.38
      (1.18, 1.61)*
      1.36
      (1.18, 1.57)*
      1.33
      (1.16, 1.53)*
      1.3
      (1.13, 1.49)*
      1.26
      (1.09, 1.46)*
      19 1.05
      (0.93, 1.19)
      1.09
      (0.98, 1.21)
      1.13
      (1.02, 1.25)*
      1.17
      (1.05, 1.30)*
      1.2
      (1.07, 1.35)*
      1.23
      (1.08, 1.41)*
      1.26
      (1.09, 1.45)*
      1.27
      (1.10, 1.47)*
      1.28
      (1.11, 1.47)*
      1.27
      (1.11, 1.46)*
      1.26
      (1.11, 1.43)*
      1.25
      (1.1, 1.41)*
      1.23
      (1.09, 1.39)*
      1.21
      (1.06, 1.38)*
      20 1.03
      (0.92, 1.16)
      1.06
      (0.96, 1.17)
      1.08
      (0.98, 1.19)
      1.11
      (1.00, 1.22)*
      1.13
      (1.01, 1.26)*
      1.15
      (1.01, 1.29)*
      1.16
      (1.02, 1.32)*
      1.17
      (1.03, 1.34)*
      1.18
      (1.03, 1.34)*
      1.18
      (1.04, 1.34)*
      1.18
      (1.05, 1.33)*
      1.17
      (1.05, 1.32)*
      1.17
      (1.04, 1.30)*
      1.16
      (1.03, 1.31)*
      21 1.02
      (0.92, 1.14)
      1.03
      (0.94, 1.14)
      1.05
      (0.95, 1.15)
      1.06
      (0.96, 1.17)
      1.07
      (0.96, 1.19)
      1.08
      (0.96, 1.21)
      1.09
      (0.96, 1.23)
      1.09
      (0.97, 1.24)
      1.1
      (0.97, 1.24)
      1.11
      (0.98, 1.24)
      1.11
      (0.99, 1.24)
      1.11
      (1.00, 1.24)*
      1.12
      (1.00, 1.24)*
      1.12
      (1.00, 1.25)*
      22 1.01
      (0.92, 1.11)
      1.02
      (0.93, 1.11)
      1.02
      (0.94, 1.11)
      1.02
      (0.93, 1.12)
      1.03
      (0.93, 1.13)
      1.03
      (0.93, 1.14)
      1.04
      (0.93, 1.16)
      1.04
      (0.93, 1.16)
      1.05
      (0.94, 1.17)
      1.05
      (0.95, 1.17)
      1.06
      (0.96, 1.17)
      1.07
      (0.97, 1.17)
      1.08
      (0.98, 1.18)
      1.08
      (0.98, 1.20)
      23 1.01
      (0.94, 1.08)
      1.00
      (0.94, 1.07)
      1.00
      (0.94, 1.07)
      1.00
      (0.94, 1.08)
      1.00
      (0.93, 1.08)
      1.00
      (0.93, 1.09)
      1.01
      (0.93, 1.09)
      1.01
      (0.93, 1.10)
      1.02
      (0.94, 1.10)
      1.02
      (0.95, 1.10)
      1.03
      (0.96, 1.11)
      1.04
      (0.97, 1.11)
      1.04
      (0.98, 1.12)
      1.05
      (0.98, 1.13)
      24 1
      (0.96, 1.04)
      1.00
      (0.97, 1.04)
      1.00
      (0.96, 1.03)
      1.00
      (0.96, 1.03)
      1.00
      (0.96, 1.04)
      1.00
      (0.95, 1.04)
      1.00
      (0.95, 1.04)
      1.00
      (0.96, 1.04)
      1.00
      (0.96, 1.05)
      1.01
      (0.96, 1.05)
      1.01
      (0.97, 1.05)
      1.01
      (0.98, 1.05)
      1.02
      (0.98, 1.06)
      1.03
      (0.99, 1.07)
      25 1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      1
      (1, 1)
      26 1.00
      (0.97, 1.03)
      1.00
      (0.97, 1.03)
      1.01
      (0.98, 1.04)
      1.01
      (0.98, 1.04)
      1.01
      (0.98, 1.04)
      1.01
      (0.98, 1.05)
      1.01
      (0.97, 1.05)
      1.01
      (0.97, 1.05)
      1.01
      (0.97, 1.04)
      1.00
      (0.97, 1.04)
      1.00
      (0.96, 1.03)
      0.99
      (0.96, 1.02)
      0.98
      (0.95, 1.01)
      0.98
      (0.95, 1.01)
      27 1.00
      (0.94, 1.06)
      1.01
      (0.95, 1.06)
      1.01
      (0.96, 1.07)
      1.02
      (0.97, 1.08)
      1.02
      (0.97, 1.08)
      1.03
      (0.97, 1.09)
      1.03
      (0.96, 1.09)
      1.02
      (0.96, 1.09)
      1.01
      (0.95, 1.08)
      1.01
      (0.95, 1.07)
      0.99
      (0.94, 1.05)
      0.98
      (0.93, 1.04)
      0.97
      (0.91, 1.02)
      0.95
      (0.9, 1.01)
      28 1.00
      (0.92, 1.08)
      1.01
      (0.94, 1.08)
      1.02
      (0.96, 1.09)
      1.03
      (0.97, 1.10)
      1.04
      (0.97, 1.11)
      1.04
      (0.97, 1.12)
      1.04
      (0.97, 1.12)
      1.03
      (0.96, 1.11)
      1.02
      (0.95, 1.10)
      1.01
      (0.94, 1.08)
      0.99
      (0.92, 1.06)
      0.97
      (0.9, 1.04)
      0.95
      (0.88, 1.02)
      0.92
      (0.85, 1.00)
      29 1.00
      (0.9, 1.10)
      1.01
      (0.93, 1.10)
      1.03
      (0.95, 1.11)
      1.04
      (0.97, 1.11)
      1.05
      (0.98, 1.12)
      1.05
      (0.98, 1.13)
      1.05
      (0.98, 1.13)
      1.04
      (0.97, 1.12)
      1.03
      (0.95, 1.11)
      1.01
      (0.93, 1.09)
      0.98
      (0.91, 1.06)
      0.95
      (0.88, 1.04)
      0.92
      (0.84, 1.02)
      0.9
      (0.81, 1.00)
      30 1.00
      (0.87, 1.13)
      1.01
      (0.91, 1.13)
      1.03
      (0.94, 1.13)
      1.05
      (0.97, 1.13)
      1.06
      (0.98, 1.14)
      1.06
      (0.98, 1.15)
      1.06
      (0.98, 1.15)
      1.05
      (0.96, 1.14)
      1.03
      (0.94, 1.12)
      1.00
      (0.92, 1.10)
      0.97
      (0.88, 1.07)
      0.94
      (0.84, 1.04)
      0.9
      (0.8, 1.02)
      0.87
      (0.75, 1.00)
        Note. *P-value < 0.05, and TM is the monthly average temperature.

      Table S6.  The cumulative RRs (95% CI) of monthly average temperature and monthly average relative humidity on the PTB incidence by different lag period

      Average temperature (°C) Average relative humidity (%)
      Lag Value RR (95% CI) Lag Value RR (95% CI)
      lag0-3 17 2.06 (1.13, 3.74)* lag0-3 73.00 1.28 (1.05, 1.57)*
      lag0-6 17 6.32 (2.22, 18.01)* lag0-6 73.00 1.79 (1.26, 2.53)*
      lag0-9 17 22.31 (4.85, 102.70)* lag0-9 73.00 2.40 (1.49, 3.87)*
      lag0-13 17 85.01 (12.11, 596.83)* lag0-11 73.00 2.72 (1.58, 4.67)*
      lag0-3 18.09 1.73 (1.08, 2.77)* lag0-3 74.24 1.20 (0.99, 1.45)
      lag0-6 18.09 4.02 (1.76, 9.15)* lag0-6 74.24 1.79 (1.28, 2.50)*
      lag0-9 18.09 10.51 (3.12, 35.40)* lag0-9 74.24 2.56 (1.60, 4.10)*
      lag0-13 18.09 30.64 (6.28, 149.50)* lag0-11 74.24 2.93 (1.71, 5.01)*
        Note. *P-value < 0.05.

      Table S7.  The RRs (95% CI) of monthly average temperature and monthly average relative humidity on the PTB incidence at different lag months

      Lag Average temperature (°C) Average relative humidity (%)
      17.00 18.09 73.00 74.24
      lag0 1.08 (0.91, 1.29) 1.06 (0.92, 1.22) 1.03 (0.98, 1.09) 0.99 (0.94, 1.05)
      lag1 1.16 (0.99, 1.35) 1.12 (0.99, 1.27) 1.05 (1.00, 1.11)* 1.03 (0.98, 1.08)
      lag2 1.24 (1.07, 1.44)* 1.18 (1.05, 1.32)* 1.08 (1.02, 1.13)* 1.07 (1.02, 1.12)*
      lag3 1.32 (1.13, 1.55)* 1.23 (1.09, 1.39)* 1.09 (1.04, 1.15)* 1.10 (1.05, 1.16)*
      lag4 1.40 (1.18, 1.66)* 1.29 (1.12, 1.47)* 1.11 (1.05, 1.17)* 1.13 (1.07, 1.19)*
      lag5 1.46 (1.21, 1.76)* 1.33 (1.14, 1.54)* 1.12 (1.06, 1.18)* 1.14 (1.08, 1.21)*
      lag6 1.51 (1.24, 1.84)* 1.36 (1.16, 1.60)* 1.12 (1.06, 1.18)* 1.15 (1.09, 1.22)*
      lag7 1.53 (1.25, 1.87)* 1.38 (1.17, 1.62)* 1.12 (1.06, 1.17)* 1.15 (1.08, 1.21)*
      lag8 1.53 (1.26, 1.86)* 1.38 (1.18, 1.62)* 1.11 (1.05, 1.16)* 1.13 (1.07, 1.19)*
      lag9 1.51 (1.25, 1.81)* 1.37 (1.18, 1.60)* 1.09 (1.04, 1.14)* 1.11 (1.06, 1.16)*
      lag10 1.47 (1.24, 1.75)* 1.35 (1.17, 1.56)* 1.07 (1.02, 1.12)* 1.08 (1.03, 1.13)*
      lag11 1.43 (1.21, 1.68)* 1.32 (1.16, 1.52)* 1.05 (1.00, 1.11)* 1.05 (1.00, 1.11)*
      lag12 1.37 (1.17, 1.61)* 1.29 (1.13, 1.48)*
      lag13 1.32 (1.11, 1.56)* 1.26 (1.09, 1.46)*
        Note. *P-value < 0.05.
参考文献 (10)
补充材料:
24058+Supplementary Materials.pdf

目录

    /

    返回文章
    返回