-
The demographics, lifestyle characteristics, and selected fluorosis risk factors of the cases and controls are presented in Table 1. There were 196 case-control pairs, including 105 female pairs and 91 male pairs. The median age was 49.0 years in the skeletal fluorosis cases and 51.0 years in the controls. Compared with the controls, the cases with skeletal fluorosis were more likely to have lower levels of education and proportion of improved stove use, but higher levels of urinary fluoride and mixed coal use. Furthermore, cases with skeletal fluorosis had a lower intake of α-carotene, β-carotene, lutein/zeaxanthin, lycopene and total carotenoids (P for trend range < 0.005 to 0.001); only for β-cryptoxanthin were these results not significant (P= 0.373). The genotype frequency distribution of rs 11968525 in control and case groups was consistent with HardyWeinberg equilibrium (χ2 = 0.601, P= 0.438; χ2 = 2.397, P= 0.122) and No significant differences were observed in genotype frequencies of rs11968525 between case and control groups (P = 0.591).
Table 1. Characteristics of the Case and Control in Coal-burning Fluorosis Area in Guizhou, China, in 2015*
Variables Median (P25, P75) P-value Case (n= 196) Control (n= 196) Age, years 49.0 (44.0, 60.0) 51.0 (43.2, 60.0) 0.703 Total energy, kcal/d 2676.4 (2002.0, 3487.7) 2587.7 (1998.0, 3213.7) 0.219 Calcium intake, mg/d 457.9 (326.3, 706.6) 482.5 (344.0, 723.6) 0.274 Roasted chili consumption, g/d 6.03 (2.43, 17.2) 5.79 (2.41, 12.5) 0.271 Urinary fluoride, mg/L 1.58 (1.21, 2.31) 1.23 (0.85, 1.73) < 0.001 Carotenoids, μg/d α-carotene 223.5 (112.5, 413.0) 295.5 (136.8, 636.9) 0.001 β-carotene 2478.1 (1388.6, 3783.8) 3186.2 (1999.4, 5051.1) < 0.001 β-cryptoxanthin 241.0 (103.5, 596.2) 210.1 (118.6, 449.3) 0.373 lycopene 296.5 (116.4, 761.6) 559.2 (246.0, 1112.0) < 0.001 Lutein/zeaxanthin 1887.3 (1109.1, 3264.1) 2817.3 (1749.5, 4319.2) < 0.001 Total carotenoids† 5408.5 (3269.2, 9234.4) 7531.6 (4854.5, 11825.7) < 0.001 Marital status, n (%) 0.541 married or cohabitation 161 (82.1) 169 (86.2) divorce or widowed 27 (13.8) 21 (10.7) unmarried 8 (4.1) 6 (3.1) Education level, n (%) < 0.001 primary school or below 177 (90.3) 144 (73.5) secondary school 17 (8.7) 40 (20.4) high school or above 2 (1.0) 12 (6.1) Fuel type, n (%) 0.008 raw coal 104 (53.1) 114 (58.2) mixed coal 56 (28.6) 31 (15.8) firewood 5 (2.6) 14 (7.1) electricity 31 (15.8) 37 (18.9) Smoker‡, n (%) 79 (40.3) 77 (39.3) 0.880 Alcohol drinker§, n (%) 61 (31.1) 65 (33.2) 0.665 Tea drinker||, n (%) 72 (36.7) 74 (37.8) 0.834 Roasting food, n (%) 109 (55.6) 95 (48.5) 0.142 Improved stove use , n (%) 143 (73.0) 169 (86.2) 0.002 Vitamin supplement, n (%) 3 (1.5) 6 (3.1) 0.312 SOD rs11968525, n (%) 0.591 GG 114 (65.1) 108 (67.9) AG+AA 61 (34.9) 51 (32.1) Note. *Continuous and categorical variables were described by means median (P25, P75) or numbers and percentages, and evaluated by the Wilcoxon signed-rank or McNemar's test, respectively, to compare the categorical and continuous variables of case and control group. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. ‡Smokers were defined as having smoked at least one cigarette daily for at least six consecutive months. §Alcohol drinking was defined as having had wine (beer, white wine, and red wine) at least once per week for at least six consecutive months. ||Tea drinkers were defined having drank tea at least twice weekly. Improving the kitchen stove to exclude the fluoride out of the room to decrease the pollution of the air indoors. -
The univariate logistic regression analyses showed that α-carotene, β-carotene, lutein/zeaxanthin, lycopene, and total carotenoids were inversely associated with skeletal fluorosis (P for trend range < 0.001 to 0.002) (Table 2). These associations were attenuated after adjusting for socio-demographic characteristics and potential confounding factors related to coal-burning fluorosis (Model 2). With further adjustments made for calcium intake, rs11968525 genotype and urinary fluoride level (Model 3), great intakes of β-carotene, lutein/zeaxanthin, lycopene, and total carotenoids were inversely associated with the risk of skeletal fluorosis (P-trend = 0.002-0.018), whereas α-carotene intakes were not found to be related to skeletal fluorosis (P-trend = 0.769). Comparisons of the first-quartile ORs (95% CIs) of skeletal fluorosis with the fourth quartiles of β-carotene, lutein/ zeaxanthin, lycopene, and total carotenoids were 0.30 (0.10, 0.86), 0.33 (0.13, 0.84), 0.26 (0.10, 0.75), 0.23 (0.08, 0.66), and 0.34 (0.14, 0.74), respectively (Table 2). No associations between the skeletal fluorosis and the intake of β-cryptoxanthin (P-trend = 0.407) were observed (Table 2).
Table 2. Odds Ratios (95% CIs) of Skeletal Fluorosis for Quartiles of Dietary Carotenoids Intake in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Items Quartiles of Dietary Carotenoids Intake P-trend Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene Median, μg/d 68.1 211.0 404.6 1035.3 Case/control 61/ 49 61/49 50/49 24/49 Model 1# 1 0.96 (0.54, 1.72) 0.69 (0.40, 1.21) 0.31 (0.15, 0.63)** 0.002 Model 2‡ 1 0.94 (0.50, 1.79) 0.82 (0.45, 1.49) 0.33 (0.17, 0.71)** 0.011 Model 3‖ 1 0.75 (0.32, 1.77) 0.89 (0.41, 1.94) 0.83 (0.30, 2.28) 0.769 β-carotene Median, μg/d 1287.1 2535.5 3788.2 7535.5 Case/control 77/ 49 50/49 43/49 26/49 Model 1# 1 0.59 (0.33, 1.06) 0.45 (0.25, 0.81)** 0.26 (0.13, 0.52)** < 0.001 Model 2‡ 1 0.47 (0.25, 0.90)* 0.44 (0.23, 0.85)* 0.25 (0.12, 0.53)** 0.001 Model 3‖ 1 0.50 (0.20, 1.24) 0.47 (0.19, 1.12) 0.30 (0.10, 0.86)* 0.018 β-cryptoxanthin Median, μg/d 76.2 158.9 313.9 834.1 Case/control 56/49 35/49 36/49 69/49 Model 1# 1 0.58 (0.33, 1.04) 0.63 (0.34, 1.13) 1.19 (0.69, 2.06) 0.430 Model 2‡ 1 0.63 (0.34, 1.18) 0.56 (0.29, 1.09) 1.25 (0.69, 2.29) 0.474 Model 3‖ 1 0.97 (0.40, 2.47) 0.42 (0.16, 1.09) 0.84 (0.36, 1.95) 0.407 Lutein/zeaxanthin Median, μg/d 1103.1 2170.3 3379.2 6420.3 Case/control 88/49 44/49 35/49 29/49 Model 1# 1 0.43 (0.23, 0.78)** 0.30 (0.16, 0.59)** 0.23 (0.11, 0.47)** < 0.001 Model 2‡ 1 0.34 (0.17, 0.67)** 0.25 (0.12, 0.53)** 0.28 (0.13, 0.60)** < 0.001 Model 3‖ 1 0.25 (0.10, 0.65)** 0.18 (0.06, 0.54)** 0.26 (0.10, 0.75)** 0.002 Lycopene Median, μg/d 113.1 379.8 790.3 1962.9 Case/control 85/49 43/49 40/49 28/49 Model 1# 1 0.43 (0.24, 0.78)** 0.33 (0.17, 0.63)** 0.24 (0.12, 0.48)** < 0.001 Model 2‡ 1 0.42 (0.21, 0.85)* 0.33 (0.16, 0.67)** 0.30 (0.14, 0.67)** < 0.001 Model 3‖ 1 0.37 (0.42, 1.09) 0.35 (0.14, 0.94)* 0.23 (0.08, 0.66)** 0.006 Total carotenoids Median, μg/d 3067.3 6175.7 9421.1 16613.3 Case/control 86/48 43/49 36/49 30/48 Model 1# 1 0.46 (0.24, 0.88)* 0.36 (0.19, 0.67)** 0.24 (0.12, 0.48)** < 0.001 Model 2‡ 1 0.47 (0.24, 0.93)* 0.35 (0.18, 0.70)* 0.36 (0.19, 0.68)** 0.001 Model 3‖ 1 0.43 (0.17, 1.04) 0.23 (0.10, 0.53)* 0.34 (0.14, 0.74)* 0.002 Note. Abbreviations: OR, odds ratio; CI, confidence interval. §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. #Model 1, crude adjusted ORs were obtained without further adjustment of covariates. ‡Model 2, adjusted for energy intake, marital status, education level, smoking, alcohol drinking, tea drinking, fuel type, improved stove use, roasting food, roasted chilli consumption, ‖Model 3, further adjusted calcium intake, rs11968525 genotype, and urinary fluoride level. *P < 0.05, **P < 0.01. -
The results of the above calculations show whether the potential risk factors modified the association between carotenoids and skeletal fluorosis (Table 3). Stratified analyses showed that there were inverse associations of total carotenoids and lutein/zeaxanthin with skeletal fluorosis significant in subjects with the SOD2 (rs11968525) AG+AA genotype (P-trend < 0.05), but this association was not significant in subjects with GG genotypes (P-trend > 0.05). There were significant interactions between dietary intake of total carotenoids and lutein/zeaxanthin and rs11968525 polymorphisms (P-interactions < 0.05), and marginal interactions between dietary intake of β-carotene and rs11968525 polymorphisms (P-interactions = 0.075). Stratified and interaction analyses demonstrated no significant interaction between the factors of gender, smoking, education, use of mixed coal and use of improved stoves, and dietary carotenoids in relation to the risk of skeletal fluorosis (P for trend range 0.101 to 0.963). (Supplementary Tables S1 to S6, available in www.besjournal.com).
Table 3. Multivariate-adjusted OR (95% CIs) of the Skeletal Fluorosis for Each Quartile of Dietary Carotenoids Intake by Subgroups of rs11968525 Genotype in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Items Quartiles of Dietary Energy-adjusted Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.402 GG 1 0.82 (0.36, 1.83) 0.94 (0.40, 2.21) 0.69 (0.26, 1.87) 0.580 AG+AA 1 1.14 (0.34, 3.85) 1.02 (0.30, 3.38) 0.50 (0.14, 1.79) 0.302 β-carotene 0.075 GG 1 0.53 (0.23, 1.20) 0.92 (0.39, 2.16) 0.45 (0.17, 1.17) 0.229 AG+AA 1 1.05 (030, 3.68) 0.30 (0.09, 0.98) 0.31 (0.08, 1.13) 0.010 lutein/zeaxanthin 0.029 GG 1 0.48 (0.16, 1.09) 0.61 (0.26, 1.42) 0.51 (0.20, 1.29) 0.179 AG+AA 1 0.51 (0.15, 1.73) 0.18 (0.05, 0.65) 0.16 (0.05, 0.52) 0.002 β-cryptoxanthin 0.686 GG 1 0.76 (0.31, 1.85) 0.56 (0.20, 1.05) 1.18 (0.52, 2.71) 0.998 AG+AA 1 0.70 (0.19, 2.60) 0.89 (0.24, 3.31) 1.88 (0.27, 2.97) 0.978 Lycopene 0.289 GG 1 0.49 (0.21, 1.14) 0.41 (0.17, 0.95) 0.44 (0.18, 1.09) 0.043 AG+AA 1 0.49 (0.15, 1.62) 0.34 (0.10, 1.14) 0.20 (0.05, 0.74) 0.004 Total carotenoids† 0.028 GG 1 0.46 (0.20, 1.06) 0.82 (0.35, 1.94) 0.53 (0.21 1.35) 0.313 AG+AA 1 0.72 (0.20, 2.67) 0.16 (0.05, 0.54) 0.19 (0.06, 0.68) 0.002 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level. §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Table Supplemental Table S1. Multivariate-adjusted OR (95% CIs) of the Skeletal Fluorosis for Each Quartile of Dietary Carotenoids Intake by Subgroups of Gender in Adults of coal-burning Fluorosis Area in Guizhou, China, in 2015
Variables Quartiles of Dietary Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.922 woman 1 0.75 (0.31, 1.81) 0.52 (0.20, 1.34) 0.74 (0.25, 2.17) 0.347 man 1 1.12 (0.41, 3.05) 1.95 (0.69, 5.55) 0.38 (0.12, 1.23) 0.416 β-carotene 0.238 woman 1 0.60 (0.25, 1.45) 0.70 (0.28, 1.78) 0.66 (0.24, 1.82) 0.380 man 1 0.96 (0.33, 2.82) 0.65 (0.23, 1.83) 0.25 (0.08, 0.84) 0.023 Lutein/zeaxanthin 0.232 woman 1 0.61 (0.24, 1.53) 0.49 (0.20, 1.22) 0.58 (0.21, 1.59) 0.148 man 1 0.20 (0.07, 0.60 0.40 (0.13, 1.26) 0.14 (0.04, 0.45) 0.006 β-cryptoxanthin 0.541 woman 1 0.52 (0.20, 1.37) 0.77 (0.29, 2.05) 0.73 (0.29, 1.83) 0.690 man 1 1.40 (0.43, 4.56) 0.76 (0.34, 1.27) 1.60 (0.59, 4.32) 0.480 Lycopene 0.419 woman 1 0.33 (0.13, 0.83) 0.35 (0.14, 0.89) 0.29 (0.11, 0.82) 0.006 man 1 0.93 (0.32, 2.71) 0.54 (0.19, 1.55) 0.46 (0.16, 1.37) 0.102 Total carotenoids† 0.312 woman 1 0.41 (0.16, 1.04) 0.58 (0.24, 1.44) 0.56 (0.20, 1.55) 0.316 man 1 0.70 (0.24, 2.05) 0.54 (0.19, 1.57) 0.28 (0.09, 0.88) 0.027 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven rs11968525 genotype and urinary fluoride level; §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Table Supplemental Table 2. Multivariate-adjusted OR (95% CIs) of Skeletal Fluorosis for Each Quartiles of Dietary Carotenoids Intake by Subgroup of Smoking‡ in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Variable Quartiles of Dietary Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.763 No 1 0.56 (0.25, 1.29) 0.48 (0.20, 1.30) 0.48 (0.20, 1.69) 0.193 Yes 1 1.84 (0.59, 5.71) 1.68 (0.54, 5.21) 0.43 (0.13, 1.50) 0.276 β-carotene 0.709 No 1 0.96 (0.42, 2.18) 0.79 (0.33, 1.89) 0.43 (0.16, 1.16) 0.116 Yes 1 0.53 (0.17, 1.66) 0.64 (0.21, 1.93) 0.31 (0.09, 1.05) 0. 099 Lutein/zeaxanthin, 0.813 No 1 0.71 (0.31, 1.67) 0.45 (0.19, 1.08) 0.38 (0.15, 0.98) 0.011 Yes 1 0.19 (0.06, 0.64) 0.55 (0.16, 1.85) 0.19 (0.06, 0.66) 0.689 β-cryptoxanthin 0.146 No 1 0.47 (0.18, 1.20) 0.58 (0.23, 1.42) 0.63 (0.26, 1.52) 0.391 Yes 1 1.33 (0.38, 4.66) 0.76 (0.42, 1.26) 1.94 (0.66, 5.71) 0.385 Lycopene 0.807 No 1 0.39 (0.16, 0.91) 0.42 (0.18, 0.99) 0.32 (0.12, 0.84) 0.006 Yes 1 0.96 (0.30, 3.05) 0.37 (0.12, 1.16) 0.39 (0.12, 1.28) 0.015 Total carotenoids † 0.765 No 1 0.74 (0.32, 1.73) 0.57 (0.24, 1.32) 0.41 (0.15, 1.08) 0.029 Yes 1 0.39 (0.20, 1.24) 0.55 (0.18, 1.72) 0.29 (0.22, 0.96) 0.076 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven rs11968525 genotype and urinary fluoride level §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Table Supplemental Table 3. Multivariate-adjusted OR (95% CIs) of the Skeletal Fluorosis for Each Quartile of Dietary Carotenoids Intake by Subgroups of Education Level in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Variables Quartiles of Dietary Energy-adjusted Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.691 ≤ 6 years 1 1.83 (0.68, 4.92) 0.85 (0.29, 2.49) 0.75 (0.22, 2.62) 0.472 > 6 years 1 0.49 (0.17, 1.48) 1.53 (0.55, 4.24) 0.38 (0.13, 1.18) 0.445 β-carotene 0.192 ≤ 6 years 1 1.95 (0.73, 5.19) 0.79 (0.26, 2.46) 0.82 (0.25, 2.63) 0.587 > 6 years 1 1.25 (0.44, 3.58) 0.64 (0.22, 1.81) 0.44 (0.15, 1.28) 0.052 lutein/zeaxanthin 0.241 ≤ 6 years 1 0.48 (0.17, 1.34) 0.66 (0.22, 2.11) 0.28 (0.08, 0.93) 0.043 > 6 years 1 0.62 (0.22, 1.74) 0.41 (0.15, 1.13) 0.18 (0.06, 0.58) 0.003 β-cryptoxanthin 0.282 ≤ 6 years 1 1.38 (0.42, 4.58) 1.23 (0.42, 3.62) 1.48 (0.52, 4.21) 0.515 > 6 years 1 0.58 (0.19, 1.73) 0.25 (0.08, 0.75) 0.69 (0.27, 1.82) 0.360 Lycopene 0.634 ≤ 6 years 1 0.25 (0.08, 0.73) 0.07 (0.02, 0.27) 0.33 (0.09, 1.22) 0.010 > 6 years 1 0.65 (0.22, 1.94) 0.19 (0.07, 0.58) 0.26 (0.09, 0.75) 0.003 Total carotenoids† 0.222 ≤ 6 years 1 0.71 (0.27, 1.89) 0.68 (0.23, 2.07) 0.49 (0.15, 1.58) 0.227 > 6 years 1 0.85 (0.29, 2.46) 0.42 (0.15, 1.21) 0.27 (0.09, 0.81) 0.007 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Table Supplemental Table 4. Multivariate-adjusted OR (95% CIs) of the skeletal fluorosis for each quartile of dietary carotenoids intake by subgroups of use of improved stove in adults of coal-burning fluorosis area in Guizhou, China, in 2015
Quartiles of dietary energy-adjusted carotenoids intake Pa Pb Quartile 1 Quartile 2 Quartile 3 Quartile 4 α-carotene 0.963 Yes 1 1.07 (0.49, 2.33) 1.06 (0.48, 2.35) 0.62 (0.25, 1.56) 0.406 No 1 0.71 (0.12, 4.13) 0.61 (0.49, 5.14) 0.35 (0.06, 1.87) 0.382 β-carotene 0.951 Yes 1 1.16 (0.54, 2.45) 0.59 (0.25, 1.35) 0.63 (0.28, 1.45) 0.141 No 1 1.99 (0.37, 5.77) 2.67 (0.41, 7.44) 0.65 (0.12, 3.45) 0.603 lutein/zeaxanthin 0.641 Yes 1 0.37 (0.16, 0.82) 0.34 (0.15, 0.79) 0.20 (0.08, 0.51) 0.001 No 1 1.45 (0.25, 8.40) 1.06 (0.18, 6.29) 0.31 (0.05, 1.90) 0.166 β-cryptoxanthin 0.101 Yes 1 1.01 (0.43, 2.38) 0.52 (0.23, 1.19) 0.79 (0.36, 1.76) 0.333 No 1 0.32 (0.04, 2.37) 0.63 (0.09, 4.02) 1.48 (0.35, 6.26) 0.434 Lycopene 0.600 Yes 1 0.23 (0.10, 0.55) 0.13 (0.05, 0.33) 0.21 (0.10, 0.48) < 0.001 No 1 1.30 (0.18, 3.04) 0.19 (0.04, 0.97) 0.49 (0.09, 2.65) 0.142 Total carotenoids† 0.869 Yes 1 0.51 (0.24, 1.11) 0.45 (0.19, 1.02) 0.32 (0.14, 0.77) 0.009 No 1 3.81 (0.47, 9.65) 0.91 (0.18, 4.58) 0.77 (0.15, 4.01) 0.394 Note: Abbreviations:OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level; § Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. a P value for linear trend, b P value for interaction. Table Supplemental Table 5. Multivariate-adjusted OR (95% CIs) of the skeletal fluorosis for each quartile of dietary carotenoids intake by subgroups of use of mixed coal in adults of coal-burning fluorosis area in Guizhou, China, in 2015
Quartiles of dietary energy-adjusted carotenoids intake Pa Pb Quartile 1 Quartile 2 Quartile 3 Quartile 4 α-carotene 0.911 Yes 1 0.94 (0.38, 2.28) 1.37 (0.54, 3.50) 0.58 (0.20, 1.64) 0.581 No 1 1.80 (0.46, 7.08) 1.96 (0.49, 7.74) 0.94 (0.22, 3.95) 0.855 β-carotene 0.390 Yes 1 1.43 (0.58, 3.52) 0.68 (0.27, 1.75) 0.49 (0.18, 1.34) 0.075 No 1 2.27 (0.61, 8.43) 1.17 (0.32, 4.34) 1.03 (0.26, 3.97) 0.792 lutein/zeaxanthin 0.241 Yes 1 0.45 (0.19, 1.09) 0.41 (0.16, 1.02) 0.19 (0.07, 0.56) 0.002 No 1 2.83 (0.69, 8.55) 1.14 (0.32, 4.04) 0.63 (0.14, 2.82) 0.310 β-cryptoxanthin 0.633 Yes 1 0.91 (0.34, 2.41) 0.54 (0.21, 1.39) 0.92 (0.39, 2.19) 0.658 No 1 0.26 (0.06, 1.19) 0.30 (0.07, 1.26) 0.72 (0.19, 2.69) 0.978 Lycopene 0.231 Yes 1 0.32 (0.13, 0.80) 0.11 (0.06, 0.35) 0.27 (0.10, 0.69) < 0.001 No 1 0.52 (0.13, 2.09) 0.36 (0.09, 1.34) 0.36 (0.09, 1.45) 0.118 Total carotenoids† 0.473 Yes 1 0.57 (0.24, 1.37) 0.52 (0.21, 1.28) 0.28 (0.10, 0.78) 0.016 No 1 2.88 (0.72, 8.45) 0.78 (0.21, 0.97) 0.90 (0.22, 3.65) 0.376 Note: Abbreviations:OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level; § Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. a P value for linear trend, b P value for interaction. Table Supplemental Table 6. Akaike criteria of three models in present study
Carotenoids Model 1# Model 2‡ Model 3 α-carotene 267.612 241.433 108.233 β-carotene 261.822 236.977 106.685 lutein/zeaxanthin 244.658 223.626 95.991 β-cryptoxanthin 270.189 247.410 110.904 Lycopene 234.228 212.849 93.815 Total carotenoids 246.642 223.282 96.968 #Model 1 Crude adjusted ORs were obtained without further adjustment of covariates; ‡Model 2 adjusted for energy intake, marital status, education level, smoking, alcohol drinking, tea drinking, fuel type, improved stove use, roasting food, roasted chilli consumption; Model 3 further adjusted calcium intake, rs11968525 genotype and urinary fluoride level.
doi: 10.3967/bes2018.057
Association of Dietary Carotenoids Intake with Skeletal Fluorosis in the Coal-burning Fluorosis Area of Guizhou Province
-
Abstract:
Objective To explore whether the intake of dietary carotenoids could protect against skeletal fluorosis in Guizhou province in which coal-burning fluorosis is endemic. Methods A case-control study of 196 patients with skeletal fluorosis and 196 age and gender-matched controls was conducted in Zhijin, Guizhou Province. Face-to-face interviews were conducted to assess habitual dietary intake using a 75-item food frequency questionnaire and various covariates with structured questionnaires. Urinary fluoride was measured using an ion-selective electrode method. The genotype of superoxide dismutase 2 (SOD2) rs11968525 was detected by TaqMan method. Results We observed significant dose-dependent inverse associations of skeletal fluorosis with intake of ǂ-carotene, lutein/zeaxanthin, lycopene, and total carotenoids (P-trend=0.002 to 0.018), whereas α-carotene and ǂ-cryptoxanthin intakes were not found to be related to skeletal fluorosis, after adjustment for potential confounders. The adjusted ORs and 95% CI of skeletal fluorosis for the highest versus lowest quartile were 0.30 (0.10, 0.86) for ǂ-carotene, 0.23 (0.08, 0.66) for lycopene, 0.26 (0.10, 0.75) for lutein/zeaxanthin and 0.34 (0.14, 0.74) for total carotenoids (all P-trend < 0.05). Stratified analyses showed that the protective effects of lutein/zeaxanthin and total carotenoids on skeletal fluorosis were more evident for individuals with the AG+AA genotypes of SOD2 (rs11968525). Conclusion Increased intakes of ǂ-carotene, lutein/zeaxanthin, lycopene, and total carotenoids are independently associated with a lower risk of coal-burning skeletal fluorosis. SOD2 (rs11968525) polymorphisms might modify the inverse associations between dietary carotenoids and skeletal fluorosis. -
Key words:
- Case-control study /
- Dietary intake /
- Carotenoids /
- Skeletal fluorosis
-
Table 1. Characteristics of the Case and Control in Coal-burning Fluorosis Area in Guizhou, China, in 2015*
Variables Median (P25, P75) P-value Case (n= 196) Control (n= 196) Age, years 49.0 (44.0, 60.0) 51.0 (43.2, 60.0) 0.703 Total energy, kcal/d 2676.4 (2002.0, 3487.7) 2587.7 (1998.0, 3213.7) 0.219 Calcium intake, mg/d 457.9 (326.3, 706.6) 482.5 (344.0, 723.6) 0.274 Roasted chili consumption, g/d 6.03 (2.43, 17.2) 5.79 (2.41, 12.5) 0.271 Urinary fluoride, mg/L 1.58 (1.21, 2.31) 1.23 (0.85, 1.73) < 0.001 Carotenoids, μg/d α-carotene 223.5 (112.5, 413.0) 295.5 (136.8, 636.9) 0.001 β-carotene 2478.1 (1388.6, 3783.8) 3186.2 (1999.4, 5051.1) < 0.001 β-cryptoxanthin 241.0 (103.5, 596.2) 210.1 (118.6, 449.3) 0.373 lycopene 296.5 (116.4, 761.6) 559.2 (246.0, 1112.0) < 0.001 Lutein/zeaxanthin 1887.3 (1109.1, 3264.1) 2817.3 (1749.5, 4319.2) < 0.001 Total carotenoids† 5408.5 (3269.2, 9234.4) 7531.6 (4854.5, 11825.7) < 0.001 Marital status, n (%) 0.541 married or cohabitation 161 (82.1) 169 (86.2) divorce or widowed 27 (13.8) 21 (10.7) unmarried 8 (4.1) 6 (3.1) Education level, n (%) < 0.001 primary school or below 177 (90.3) 144 (73.5) secondary school 17 (8.7) 40 (20.4) high school or above 2 (1.0) 12 (6.1) Fuel type, n (%) 0.008 raw coal 104 (53.1) 114 (58.2) mixed coal 56 (28.6) 31 (15.8) firewood 5 (2.6) 14 (7.1) electricity 31 (15.8) 37 (18.9) Smoker‡, n (%) 79 (40.3) 77 (39.3) 0.880 Alcohol drinker§, n (%) 61 (31.1) 65 (33.2) 0.665 Tea drinker||, n (%) 72 (36.7) 74 (37.8) 0.834 Roasting food, n (%) 109 (55.6) 95 (48.5) 0.142 Improved stove use , n (%) 143 (73.0) 169 (86.2) 0.002 Vitamin supplement, n (%) 3 (1.5) 6 (3.1) 0.312 SOD rs11968525, n (%) 0.591 GG 114 (65.1) 108 (67.9) AG+AA 61 (34.9) 51 (32.1) Note. *Continuous and categorical variables were described by means median (P25, P75) or numbers and percentages, and evaluated by the Wilcoxon signed-rank or McNemar's test, respectively, to compare the categorical and continuous variables of case and control group. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. ‡Smokers were defined as having smoked at least one cigarette daily for at least six consecutive months. §Alcohol drinking was defined as having had wine (beer, white wine, and red wine) at least once per week for at least six consecutive months. ||Tea drinkers were defined having drank tea at least twice weekly. Improving the kitchen stove to exclude the fluoride out of the room to decrease the pollution of the air indoors. Table 2. Odds Ratios (95% CIs) of Skeletal Fluorosis for Quartiles of Dietary Carotenoids Intake in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Items Quartiles of Dietary Carotenoids Intake P-trend Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene Median, μg/d 68.1 211.0 404.6 1035.3 Case/control 61/ 49 61/49 50/49 24/49 Model 1# 1 0.96 (0.54, 1.72) 0.69 (0.40, 1.21) 0.31 (0.15, 0.63)** 0.002 Model 2‡ 1 0.94 (0.50, 1.79) 0.82 (0.45, 1.49) 0.33 (0.17, 0.71)** 0.011 Model 3‖ 1 0.75 (0.32, 1.77) 0.89 (0.41, 1.94) 0.83 (0.30, 2.28) 0.769 β-carotene Median, μg/d 1287.1 2535.5 3788.2 7535.5 Case/control 77/ 49 50/49 43/49 26/49 Model 1# 1 0.59 (0.33, 1.06) 0.45 (0.25, 0.81)** 0.26 (0.13, 0.52)** < 0.001 Model 2‡ 1 0.47 (0.25, 0.90)* 0.44 (0.23, 0.85)* 0.25 (0.12, 0.53)** 0.001 Model 3‖ 1 0.50 (0.20, 1.24) 0.47 (0.19, 1.12) 0.30 (0.10, 0.86)* 0.018 β-cryptoxanthin Median, μg/d 76.2 158.9 313.9 834.1 Case/control 56/49 35/49 36/49 69/49 Model 1# 1 0.58 (0.33, 1.04) 0.63 (0.34, 1.13) 1.19 (0.69, 2.06) 0.430 Model 2‡ 1 0.63 (0.34, 1.18) 0.56 (0.29, 1.09) 1.25 (0.69, 2.29) 0.474 Model 3‖ 1 0.97 (0.40, 2.47) 0.42 (0.16, 1.09) 0.84 (0.36, 1.95) 0.407 Lutein/zeaxanthin Median, μg/d 1103.1 2170.3 3379.2 6420.3 Case/control 88/49 44/49 35/49 29/49 Model 1# 1 0.43 (0.23, 0.78)** 0.30 (0.16, 0.59)** 0.23 (0.11, 0.47)** < 0.001 Model 2‡ 1 0.34 (0.17, 0.67)** 0.25 (0.12, 0.53)** 0.28 (0.13, 0.60)** < 0.001 Model 3‖ 1 0.25 (0.10, 0.65)** 0.18 (0.06, 0.54)** 0.26 (0.10, 0.75)** 0.002 Lycopene Median, μg/d 113.1 379.8 790.3 1962.9 Case/control 85/49 43/49 40/49 28/49 Model 1# 1 0.43 (0.24, 0.78)** 0.33 (0.17, 0.63)** 0.24 (0.12, 0.48)** < 0.001 Model 2‡ 1 0.42 (0.21, 0.85)* 0.33 (0.16, 0.67)** 0.30 (0.14, 0.67)** < 0.001 Model 3‖ 1 0.37 (0.42, 1.09) 0.35 (0.14, 0.94)* 0.23 (0.08, 0.66)** 0.006 Total carotenoids Median, μg/d 3067.3 6175.7 9421.1 16613.3 Case/control 86/48 43/49 36/49 30/48 Model 1# 1 0.46 (0.24, 0.88)* 0.36 (0.19, 0.67)** 0.24 (0.12, 0.48)** < 0.001 Model 2‡ 1 0.47 (0.24, 0.93)* 0.35 (0.18, 0.70)* 0.36 (0.19, 0.68)** 0.001 Model 3‖ 1 0.43 (0.17, 1.04) 0.23 (0.10, 0.53)* 0.34 (0.14, 0.74)* 0.002 Note. Abbreviations: OR, odds ratio; CI, confidence interval. §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. #Model 1, crude adjusted ORs were obtained without further adjustment of covariates. ‡Model 2, adjusted for energy intake, marital status, education level, smoking, alcohol drinking, tea drinking, fuel type, improved stove use, roasting food, roasted chilli consumption, ‖Model 3, further adjusted calcium intake, rs11968525 genotype, and urinary fluoride level. *P < 0.05, **P < 0.01. Table 3. Multivariate-adjusted OR (95% CIs) of the Skeletal Fluorosis for Each Quartile of Dietary Carotenoids Intake by Subgroups of rs11968525 Genotype in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Items Quartiles of Dietary Energy-adjusted Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.402 GG 1 0.82 (0.36, 1.83) 0.94 (0.40, 2.21) 0.69 (0.26, 1.87) 0.580 AG+AA 1 1.14 (0.34, 3.85) 1.02 (0.30, 3.38) 0.50 (0.14, 1.79) 0.302 β-carotene 0.075 GG 1 0.53 (0.23, 1.20) 0.92 (0.39, 2.16) 0.45 (0.17, 1.17) 0.229 AG+AA 1 1.05 (030, 3.68) 0.30 (0.09, 0.98) 0.31 (0.08, 1.13) 0.010 lutein/zeaxanthin 0.029 GG 1 0.48 (0.16, 1.09) 0.61 (0.26, 1.42) 0.51 (0.20, 1.29) 0.179 AG+AA 1 0.51 (0.15, 1.73) 0.18 (0.05, 0.65) 0.16 (0.05, 0.52) 0.002 β-cryptoxanthin 0.686 GG 1 0.76 (0.31, 1.85) 0.56 (0.20, 1.05) 1.18 (0.52, 2.71) 0.998 AG+AA 1 0.70 (0.19, 2.60) 0.89 (0.24, 3.31) 1.88 (0.27, 2.97) 0.978 Lycopene 0.289 GG 1 0.49 (0.21, 1.14) 0.41 (0.17, 0.95) 0.44 (0.18, 1.09) 0.043 AG+AA 1 0.49 (0.15, 1.62) 0.34 (0.10, 1.14) 0.20 (0.05, 0.74) 0.004 Total carotenoids† 0.028 GG 1 0.46 (0.20, 1.06) 0.82 (0.35, 1.94) 0.53 (0.21 1.35) 0.313 AG+AA 1 0.72 (0.20, 2.67) 0.16 (0.05, 0.54) 0.19 (0.06, 0.68) 0.002 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level. §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene, and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Supplemental Table S1. Multivariate-adjusted OR (95% CIs) of the Skeletal Fluorosis for Each Quartile of Dietary Carotenoids Intake by Subgroups of Gender in Adults of coal-burning Fluorosis Area in Guizhou, China, in 2015
Variables Quartiles of Dietary Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.922 woman 1 0.75 (0.31, 1.81) 0.52 (0.20, 1.34) 0.74 (0.25, 2.17) 0.347 man 1 1.12 (0.41, 3.05) 1.95 (0.69, 5.55) 0.38 (0.12, 1.23) 0.416 β-carotene 0.238 woman 1 0.60 (0.25, 1.45) 0.70 (0.28, 1.78) 0.66 (0.24, 1.82) 0.380 man 1 0.96 (0.33, 2.82) 0.65 (0.23, 1.83) 0.25 (0.08, 0.84) 0.023 Lutein/zeaxanthin 0.232 woman 1 0.61 (0.24, 1.53) 0.49 (0.20, 1.22) 0.58 (0.21, 1.59) 0.148 man 1 0.20 (0.07, 0.60 0.40 (0.13, 1.26) 0.14 (0.04, 0.45) 0.006 β-cryptoxanthin 0.541 woman 1 0.52 (0.20, 1.37) 0.77 (0.29, 2.05) 0.73 (0.29, 1.83) 0.690 man 1 1.40 (0.43, 4.56) 0.76 (0.34, 1.27) 1.60 (0.59, 4.32) 0.480 Lycopene 0.419 woman 1 0.33 (0.13, 0.83) 0.35 (0.14, 0.89) 0.29 (0.11, 0.82) 0.006 man 1 0.93 (0.32, 2.71) 0.54 (0.19, 1.55) 0.46 (0.16, 1.37) 0.102 Total carotenoids† 0.312 woman 1 0.41 (0.16, 1.04) 0.58 (0.24, 1.44) 0.56 (0.20, 1.55) 0.316 man 1 0.70 (0.24, 2.05) 0.54 (0.19, 1.57) 0.28 (0.09, 0.88) 0.027 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven rs11968525 genotype and urinary fluoride level; §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Supplemental Table 2. Multivariate-adjusted OR (95% CIs) of Skeletal Fluorosis for Each Quartiles of Dietary Carotenoids Intake by Subgroup of Smoking‡ in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Variable Quartiles of Dietary Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.763 No 1 0.56 (0.25, 1.29) 0.48 (0.20, 1.30) 0.48 (0.20, 1.69) 0.193 Yes 1 1.84 (0.59, 5.71) 1.68 (0.54, 5.21) 0.43 (0.13, 1.50) 0.276 β-carotene 0.709 No 1 0.96 (0.42, 2.18) 0.79 (0.33, 1.89) 0.43 (0.16, 1.16) 0.116 Yes 1 0.53 (0.17, 1.66) 0.64 (0.21, 1.93) 0.31 (0.09, 1.05) 0. 099 Lutein/zeaxanthin, 0.813 No 1 0.71 (0.31, 1.67) 0.45 (0.19, 1.08) 0.38 (0.15, 0.98) 0.011 Yes 1 0.19 (0.06, 0.64) 0.55 (0.16, 1.85) 0.19 (0.06, 0.66) 0.689 β-cryptoxanthin 0.146 No 1 0.47 (0.18, 1.20) 0.58 (0.23, 1.42) 0.63 (0.26, 1.52) 0.391 Yes 1 1.33 (0.38, 4.66) 0.76 (0.42, 1.26) 1.94 (0.66, 5.71) 0.385 Lycopene 0.807 No 1 0.39 (0.16, 0.91) 0.42 (0.18, 0.99) 0.32 (0.12, 0.84) 0.006 Yes 1 0.96 (0.30, 3.05) 0.37 (0.12, 1.16) 0.39 (0.12, 1.28) 0.015 Total carotenoids † 0.765 No 1 0.74 (0.32, 1.73) 0.57 (0.24, 1.32) 0.41 (0.15, 1.08) 0.029 Yes 1 0.39 (0.20, 1.24) 0.55 (0.18, 1.72) 0.29 (0.22, 0.96) 0.076 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven rs11968525 genotype and urinary fluoride level §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Supplemental Table 3. Multivariate-adjusted OR (95% CIs) of the Skeletal Fluorosis for Each Quartile of Dietary Carotenoids Intake by Subgroups of Education Level in Adults of Coal-burning Fluorosis Area in Guizhou, China, in 2015
Variables Quartiles of Dietary Energy-adjusted Carotenoids Intake Pa Pb Quartile 1§ Quartile 2 Quartile 3 Quartile 4 α-carotene 0.691 ≤ 6 years 1 1.83 (0.68, 4.92) 0.85 (0.29, 2.49) 0.75 (0.22, 2.62) 0.472 > 6 years 1 0.49 (0.17, 1.48) 1.53 (0.55, 4.24) 0.38 (0.13, 1.18) 0.445 β-carotene 0.192 ≤ 6 years 1 1.95 (0.73, 5.19) 0.79 (0.26, 2.46) 0.82 (0.25, 2.63) 0.587 > 6 years 1 1.25 (0.44, 3.58) 0.64 (0.22, 1.81) 0.44 (0.15, 1.28) 0.052 lutein/zeaxanthin 0.241 ≤ 6 years 1 0.48 (0.17, 1.34) 0.66 (0.22, 2.11) 0.28 (0.08, 0.93) 0.043 > 6 years 1 0.62 (0.22, 1.74) 0.41 (0.15, 1.13) 0.18 (0.06, 0.58) 0.003 β-cryptoxanthin 0.282 ≤ 6 years 1 1.38 (0.42, 4.58) 1.23 (0.42, 3.62) 1.48 (0.52, 4.21) 0.515 > 6 years 1 0.58 (0.19, 1.73) 0.25 (0.08, 0.75) 0.69 (0.27, 1.82) 0.360 Lycopene 0.634 ≤ 6 years 1 0.25 (0.08, 0.73) 0.07 (0.02, 0.27) 0.33 (0.09, 1.22) 0.010 > 6 years 1 0.65 (0.22, 1.94) 0.19 (0.07, 0.58) 0.26 (0.09, 0.75) 0.003 Total carotenoids† 0.222 ≤ 6 years 1 0.71 (0.27, 1.89) 0.68 (0.23, 2.07) 0.49 (0.15, 1.58) 0.227 > 6 years 1 0.85 (0.29, 2.46) 0.42 (0.15, 1.21) 0.27 (0.09, 0.81) 0.007 Note. Abbreviations: OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level §Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. aP value for linear trend, bP value for interaction. Supplemental Table 4. Multivariate-adjusted OR (95% CIs) of the skeletal fluorosis for each quartile of dietary carotenoids intake by subgroups of use of improved stove in adults of coal-burning fluorosis area in Guizhou, China, in 2015
Quartiles of dietary energy-adjusted carotenoids intake Pa Pb Quartile 1 Quartile 2 Quartile 3 Quartile 4 α-carotene 0.963 Yes 1 1.07 (0.49, 2.33) 1.06 (0.48, 2.35) 0.62 (0.25, 1.56) 0.406 No 1 0.71 (0.12, 4.13) 0.61 (0.49, 5.14) 0.35 (0.06, 1.87) 0.382 β-carotene 0.951 Yes 1 1.16 (0.54, 2.45) 0.59 (0.25, 1.35) 0.63 (0.28, 1.45) 0.141 No 1 1.99 (0.37, 5.77) 2.67 (0.41, 7.44) 0.65 (0.12, 3.45) 0.603 lutein/zeaxanthin 0.641 Yes 1 0.37 (0.16, 0.82) 0.34 (0.15, 0.79) 0.20 (0.08, 0.51) 0.001 No 1 1.45 (0.25, 8.40) 1.06 (0.18, 6.29) 0.31 (0.05, 1.90) 0.166 β-cryptoxanthin 0.101 Yes 1 1.01 (0.43, 2.38) 0.52 (0.23, 1.19) 0.79 (0.36, 1.76) 0.333 No 1 0.32 (0.04, 2.37) 0.63 (0.09, 4.02) 1.48 (0.35, 6.26) 0.434 Lycopene 0.600 Yes 1 0.23 (0.10, 0.55) 0.13 (0.05, 0.33) 0.21 (0.10, 0.48) < 0.001 No 1 1.30 (0.18, 3.04) 0.19 (0.04, 0.97) 0.49 (0.09, 2.65) 0.142 Total carotenoids† 0.869 Yes 1 0.51 (0.24, 1.11) 0.45 (0.19, 1.02) 0.32 (0.14, 0.77) 0.009 No 1 3.81 (0.47, 9.65) 0.91 (0.18, 4.58) 0.77 (0.15, 4.01) 0.394 Note: Abbreviations:OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level; § Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. a P value for linear trend, b P value for interaction. Supplemental Table 5. Multivariate-adjusted OR (95% CIs) of the skeletal fluorosis for each quartile of dietary carotenoids intake by subgroups of use of mixed coal in adults of coal-burning fluorosis area in Guizhou, China, in 2015
Quartiles of dietary energy-adjusted carotenoids intake Pa Pb Quartile 1 Quartile 2 Quartile 3 Quartile 4 α-carotene 0.911 Yes 1 0.94 (0.38, 2.28) 1.37 (0.54, 3.50) 0.58 (0.20, 1.64) 0.581 No 1 1.80 (0.46, 7.08) 1.96 (0.49, 7.74) 0.94 (0.22, 3.95) 0.855 β-carotene 0.390 Yes 1 1.43 (0.58, 3.52) 0.68 (0.27, 1.75) 0.49 (0.18, 1.34) 0.075 No 1 2.27 (0.61, 8.43) 1.17 (0.32, 4.34) 1.03 (0.26, 3.97) 0.792 lutein/zeaxanthin 0.241 Yes 1 0.45 (0.19, 1.09) 0.41 (0.16, 1.02) 0.19 (0.07, 0.56) 0.002 No 1 2.83 (0.69, 8.55) 1.14 (0.32, 4.04) 0.63 (0.14, 2.82) 0.310 β-cryptoxanthin 0.633 Yes 1 0.91 (0.34, 2.41) 0.54 (0.21, 1.39) 0.92 (0.39, 2.19) 0.658 No 1 0.26 (0.06, 1.19) 0.30 (0.07, 1.26) 0.72 (0.19, 2.69) 0.978 Lycopene 0.231 Yes 1 0.32 (0.13, 0.80) 0.11 (0.06, 0.35) 0.27 (0.10, 0.69) < 0.001 No 1 0.52 (0.13, 2.09) 0.36 (0.09, 1.34) 0.36 (0.09, 1.45) 0.118 Total carotenoids† 0.473 Yes 1 0.57 (0.24, 1.37) 0.52 (0.21, 1.28) 0.28 (0.10, 0.78) 0.016 No 1 2.88 (0.72, 8.45) 0.78 (0.21, 0.97) 0.90 (0.22, 3.65) 0.376 Note: Abbreviations:OR, odds ratio; CI, confidence interval. Unconditional logistic regression analyses to ORs and 95% CIs. Covariates adjusted for age, gender, marital status, education level, smoking, alcohol drinking, tea drinking, total energy, calcium intake, roasted chili consumption, fuel type, roasting food, use of an improved oven, rs11968525 genotype and urinary fluoride level; § Quartile 1 was the reference quartile. †Total carotenoids indicate the sum of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin. a P value for linear trend, b P value for interaction. Supplemental Table 6. Akaike criteria of three models in present study
Carotenoids Model 1# Model 2‡ Model 3 α-carotene 267.612 241.433 108.233 β-carotene 261.822 236.977 106.685 lutein/zeaxanthin 244.658 223.626 95.991 β-cryptoxanthin 270.189 247.410 110.904 Lycopene 234.228 212.849 93.815 Total carotenoids 246.642 223.282 96.968 #Model 1 Crude adjusted ORs were obtained without further adjustment of covariates; ‡Model 2 adjusted for energy intake, marital status, education level, smoking, alcohol drinking, tea drinking, fuel type, improved stove use, roasting food, roasted chilli consumption; Model 3 further adjusted calcium intake, rs11968525 genotype and urinary fluoride level. -
[1] K Bailey, J Chilton, E Dahi M, et al. Fluoride in Drinking-water. WHO Press, Switzerland, 2006; 32-4. [2] Yonghua Li, Wuyi Wang, Linsheng Yang, et al. Environmental epidemic characteristics of coal-burning endemic fluorosis and the safety threshold of coal fluoride in China. Fluoride, 2003; 36, 106-12. https://core.ac.uk/display/71585885 [3] Luo KL, Li L, Zhang SX. Coal-burning roasted corn and chili as the cause of dental fluorosis for children in southwestern China. J Hazard Mater, 2011; 185, 1340-7. doi: 10.1016/j.jhazmat.2010.10.052 [4] Jha SK, Mishra VK, Sharma DK, et al. Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol, 2011; 211, 121-42. http://www.ncbi.nlm.nih.gov/pubmed/21287392 [5] Yang C, Wang Y, Xu H. Treatment and Prevention of Skeletal Fluorosis. Biomed Environ Sci, 2017; 30, 147-9. https://www.sciencedirect.com/science/article/pii/S0895398817300454#! [6] Guan Zhizhong. Role of oxidative stress in molecular pathogenesis of endemic fluorosis. Chin J Endemiol, 2016; 35, 79-82. (In Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYYB199103009.htm [7] Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chemico-biological interactions, 2010; 188, 319-33. doi: 10.1016/j.cbi.2010.07.011 [8] Wilhelm Stahl, Helmut Sies. Antioxidant activity of carotenoids. Mol Aspects Med, 2003; 24, 345-51. doi: 10.1016/S0098-2997(03)00030-X [9] Mansour HH, Tawfik SS. Efficacy of lycopene against fluoride toxicity in rats. Pharmaceutical biology, 2012; 50, 707-11. doi: 10.3109/13880209.2011.618994 [10] Karahan I, Atessahin A, Yilmaz S, et al. Rotective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology, 2005; 215, 198-204. doi: 10.1016/j.tox.2005.07.007 [11] Li W, Jiang B, Cao X, et al. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways. Chem Biological Interact, 2017; 261, 27-34. doi: 10.1016/j.cbi.2016.11.021 [12] Dai Z, Wang R, Ang LW, et al. Protective effects of dietary carotenoids on risk of hip fracture in men:the Singapore Chinese Health Study. J Bone Miner Res, 2014; 29, 408-17. doi: 10.1002/jbmr.v29.2 [13] Clinton SK. Lycopene:chemistry, biology, and implications for human health and disease. Nutr Rev, 1998; 56, 35-51. http://nutritionreviews.oxfordjournals.org/content/56/2/35.abstract [14] Sahni S, Hannan MT, Blumberg J, et al. Inverse association of carotenoid intakes with 4-y change in bone mineral density in elderly men and women:the Framingham Osteoporosis Study. Am J Clin Nutr, 2009; 89, 416-24. doi: 10.3945/ajcn.2008.26388 [15] Xu J, Song C, Song X, et al. Carotenoids and risk of fracture:a meta-analysis of observational studies. Oncotarget, 2017; 8, 2391-9. http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=13678&path%5B%5D=0 [16] Choubisa SL, Choubisa L, Choubisa DK. Endemic fluorosis in Rajasthan. Indian J Environ Health, 2001; 43, 177-89. http://www.ncbi.nlm.nih.gov/pubmed/12395525 [17] Pramanik S, Saha D. The genetic influence in fluorosis. Environ Toxicol Pharmacol, 2017; 56, 157-62. doi: 10.1016/j.etap.2017.09.008 [18] Varol E, Icli A, Aksoy F, et al. Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health, 2013; 29, 175-80. doi: 10.1177/0748233711428641 [19] Wang Q, Cui KP, Xu YY, et al. Coal-burning endemic fluorosis is associated with reduced activity in antioxidative enzymes and Cu/Zn-SOD gene expression. Environ Geochem Hlth, 2014; 36, 107-15. doi: 10.1007/s10653-013-9522-2 [20] Deng FY, Lei SF, Chen XD. An Integrative Study Ascertained SOD2 as a Susceptibility Gene for Osteoporosis in Chinese. J Bone Miner Res, 2011; 26, 2695-701. doi: 10.1002/jbmr.471 [21] Ma Q, Huang H, Sun L, et al. Gene-environment interaction:Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms? Chemosphere, 2017; 188, 525-31. doi: 10.1016/j.chemosphere.2017.08.166 [22] Yang D, Liu Y, Chu Y. Association between vitamin D receptor gene FokI polymorphism and skeletal fluorosis of the brick-tea type fluorosis:a cross sectional, case control study. BMJ Open, 2016; 6, e011980. doi: 10.1136/bmjopen-2016-011980 [23] Ministry of Health of the People's Republic of China Health. Industry Standard of the People's Republic of China WS/T 192-2008 Diagnostic Criteria for Endemic Skeletal Fluorosis. People's Medical Publishing House, Beijin, 2008; 1-4. (In Chinese) [24] Yang YX, Wang GY, Pan XC. China Food Composition, 2nd edn. University Medical Publishing House, Beijin, 2009; 377-84. (In Chinese) [25] USDA national nutrient database for standard reference release28. http://www.ars.usda.gov/Services/docs.htm?docid=8964, 2015. [2016-7] [26] Wang L, Li B, Pan MX, et al. Specific carotenoid intake is inversely associated with the risk of breast cancer among Chinese women. The British journal of nutrition, 2014; 111, 1686-95. doi: 10.1017/S000711451300411X [27] Zhang CX, Ho SC. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr, 2009; 18, 240-50. http://search.informit.com.au/fullText;dn=683818080008836;res=IELHEA [28] Lu MS, Fang YJ, Chen YM, et al. Higher intake of carotenoid is associated with a lower risk of colorectal cancer in Chinese adults:a case-control study. Eur J Nutr, 2015; 54, 619-28. doi: 10.1007/s00394-014-0743-7 [29] Ministry of Health of the People's Republic of China. Health Industry Standard of the People's Republic of China WS/T 256-2005 The normal urinary fluoride level of Chinese population. People's Medical Publishing House, Beijin, 2006; 1-3. (In Chinese) [30] Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr, 1997; 65, 1220S-8S. doi: 10.1093/ajcn/65.4.1220S [31] Sahni S, Hannan MT, Blumberg J, et al. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture:a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res, 2009; 24, 1086-94. doi: 10.1359/jbmr.090102 [32] Hayhoe RPG, Lentjes MAH, Mulligan AA, et al. Carotenoid dietary intakes and plasma concentrations are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Br J Nutr, 2017; 117, 1439-53. doi: 10.1017/S0007114517001180 [33] Zhang ZQ, Cao WT, Liu J, et al. Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporos Int, 2016; 27, 1593-601. doi: 10.1007/s00198-015-3425-2 [34] Rao LG, Krishnadev N, Banasikowska K, et al. Lycopene Ⅰ--effect on osteoclasts:lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food, 2003; 6, 69-78. doi: 10.1089/109662003322233459 [35] Kim L, Rao AV, Rao LG. Lycopene Ⅱ——effect on osteoblasts:the carotenoid lycopene stimulates cell proliferation and alkaline phosphatase activity of SaOS-2 cells. J Med Food, 2003; 6, 79-86. doi: 10.1089/109662003322233468 [36] Gupta N, Gupta N, Chhabra P. Image Diagnosis:Dental and Skeletal Fluorosis. Perm J, 2016; 20, e105-106. http://www.neurologyindia.com/article.asp?issn=0028-3886;year=2009;volume=57;issue=1;spage=7;epage=12;aulast=Reddy;type=0 [37] Simon MJK, Beil FT, Riedel C, et al. Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure. Clin Oral Investig, 2016; 20, 2361-70. doi: 10.1007/s00784-016-1727-1 [38] Wauquier F, Leotoing L, Coxam V, et al. Oxidative stress in bone remodelling and disease. Trends Mol Med, 2009; 15, 468-77. doi: 10.1016/j.molmed.2009.08.004 [39] Bai XC, Lu D, Liu AL, et al. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem, 2005; 280, 17497-506. doi: 10.1074/jbc.M409332200 [40] Lee NK, Choi YG, Baik JY, et al. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005; 106, 852-9. doi: 10.1182/blood-2004-09-3662 [41] Stahl W, Sies H. Lycopene:a biologically important carotenoid for humans? Arch Biochem Biophys, 1996; 336, 1-9. doi: 10.1006/abbi.1996.0525 [42] Ming X, Min X, Lei H, et al. Role for Functional SOD2 Polymorphism in Pulmonary Arterial Hypertension in a Chinese Population. Int J Environ Res Public Health, 2017; 14, 259-66. doi: 10.3390/ijerph14030259 [43] Lee SA. Gene-diet interaction on cancer risk in epidemiological studies. J Prev Med Public Health, 2009; 42, 360-70. doi: 10.3961/jpmph.2009.42.6.360 [44] Karaoz E, Oncu M, Gulle K, et al. Effect of chronic fluorosis on lipid peroxidation and histology of kidney tissues in first- and second-generation rats. Biol Trace Elem Res, 2004; 102, 199-208. doi: 10.1385/BTER:102:1-3 [45] Barbier O, Arreola-Mendoza L, Del Razo LM. Molecular mechanisms of fluoride toxicity. Chem Biol Interact, 2010; 188, 319-33. doi: 10.1016/j.cbi.2010.07.011 [46] Suzuki M, Sierant ML, Antone JV, et al. Uncoupling protein-2 is an antioxidant that is up-regulated in the enamel organ of fluoride-treated rats. Connect Tissue Res, 2014; 55, 25-8. doi: 10.3109/03008207.2014.923854 [47] J Opydo-Szymaczek, M Borysewicz-Lewicka. Urinary fluoride levels for assessment of fluoride exposure of pregnant women in Poznan. Pol Fluoride, 2005; 38, 312-7. https://www.researchgate.net/publication/265318084_Urinary_fluoride_levels_for_assessment_of_fluoride_exposure_of_pregnant_women_in_Poznan_Poland [48] Narges Omid, Anne Maguire, William T, et al. Total daily fluoride intake and fractional urinary fluoride excretion in 4 to 6 year old children living in a fluoridated area:weekly variation? Community Dent Oral Epidemiol, 2016; 45, doi: 10.1111/cdoe.12254.